首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了湖北大贵寺国家森林公园野生青檀种群64份2~3年生青檀枝条檀皮的纤维成分.结果表明,该野生青檀枝条檀皮纤维的水分、灰分、冷水抽出物、热水抽出物等指标的平均值分别为8.267%、6.273%、24.025%、26.594%;1%NaOH抽出物、苯-醇抽出物、综纤维素、酸不溶木素等指标的平均值分别为60.904%、11.011%、56.759%、9.698%;纤维素吸光值为0.373.酸不溶木素、灰分、纤维素吸光值以及1% NaOH抽出物4个指标呈现近正态分布,其它指标的分布偏斜度较大;水分与1% NaOH抽出物、灰分与酸不溶木素、综纤维素与酸不溶木素之间具有显著的相关性(p<0.05);水分与灰分、水分与热水抽出物、水分与综纤维素、苯-醇抽出物与综纤维素、苯-醇抽出物与酸不溶木素之间具有极显著的相关性(p<0.01).平均连锁值取5.627时,可以把64个样品分为23类,说明大贵寺国家森林公园野生青檀群体檀皮纤维成分存在着较高的表型多样性,具有广阔的遗传改良前景.  相似文献   

2.
尚洁  贾洪柏  王秋玉 《植物研究》2007,27(5):607-611
以东北地区5个天然白桦种群为研究对象,进行了木材的化学成分分析。结果表明:除1% NaOH抽出物、综纤维素、聚戊糖外,种群间化学成分含量差异都显著,并且各种群变异较大,这为白桦纸浆材种群间选择和种群内选择提供了可能。白桦天然种群间灰分与苯醇抽出物含量呈显著正相关,综纤维素与聚戊糖含量呈显著正相关。灰分和抽出物含量的变异与经度呈一定程度负相关,综纤维素和聚戊糖与纬度呈一定程度正相关,木素与纬度呈一定程度负相关。这表明,选择较高经纬度地区的白桦,可以降低灰分、抽出物、木素含量,提高综纤维素和聚戊糖含量。  相似文献   

3.
The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days.  相似文献   

4.
Far less is known about the coarse woody debris (CWD) stock and decay process in temperate Asia compared with that in boreal and temperate Europe and North America. We estimated coniferous CWD stock (logs and snags), decay rate and process, and fungal species responsible for the decay process in a Japanese subalpine coniferous forest. The CWD mass was 42.4 Mg ha?1, which was the greatest among the previous data recorded in temperate Asia. The decay rate calculated using the annual input of CWD divided by CWD accumulation was 0.036 year?1, whereas the decay rate when measured chronosequentially was 0.020–0.023 year?1. The decay process was divided into two phases characterized by different dominant organic chemical constituents. In the first phase, both acid-unhydrolyzable residue and holocellulose decayed simultaneously, suggestive of the white-rot process. In the second phase, holocellulose was selectively decomposed and AUR accumulated, suggestive of the brown-rot process. Nutrients (N, P, K, Na, Mg, and Ca) were mineralized in the first phase but immobilized in the second phase. The fruiting bodies of 26 taxa of fungi were recorded as occurring on CWD in the study area. Trichaptum abietinum and T. fuscoviolaceum, which dominated in the first phase and are known as white-rot fungi, were assumed to be the main decomposers of lignocellulose in the first phase. Although no known strong wood decomposers dominated the second phase, Laetiporus sulphureus and Oligoporus caesius, known as brown-rot fungi, were expected to participate in the selective decomposition of holocellulose in the second phase.  相似文献   

5.
Decomposition processes of Camellia japonica leaf litter were investigated over an 18-month period with reference to the role of fungal succession in the decomposition of lignin and holocellulose. Decomposition and fungal succession were studied in bleached and nonbleached portions of litter, which were precolonized by ligninolytic and cellulolytic fungi, respectively. Coccomyces nipponicum and Lophodermium sp. (Rhytismataceae), which can attack lignin selectively, caused mass loss of lignin and were responsible for bleaching during the first 4 months (stage I), whereas cellulolytic fungi caused mass loss of holocellulose in adjacent nonbleached portions. Soluble carbohydrates and polyphenols also decreased rapidly during this stage. Pestalotiopsis guepini, coelomycete sp.1, and the Nigrospora state of Khuskia oryzae caused mass loss of holocellulose between 4 and 14 months (stage II) and Xylaria sp. caused mass loss of both lignin and holocellulose from 14–18 months (stage III). In stages II and III, decomposition was more rapid in bleached portions than in nonbleached portions probably due to the prior delignification of lignified holocellulose in bleached portions. Frequencies of these fungi showed different responses among species to the pattern of changes in lignin and holocellulose contents during decomposition. Total hyphal length increased in both portions over the study period, but mycelia of basidiomycetes accounted for about 2% of total hyphal length, suggesting that their role in fungal succession and decomposition was low. Lignin and nitrogen contents were consistently lower and holocellulose content was higher in bleached portions than in nonbleached portions during decomposition. The succession of ligninolytic and cellulolytic fungi was a major driving factor that promoted decomposition and precolonization by ligninolytic fungi enhanced decomposition.  相似文献   

6.
张艳艳  李林辉 《菌物研究》2008,6(3):179-182
将毛头鬼伞菌丝体接种到不同栽培培养基上,分析了菌丝体对培养基中综纤维素、木质素以及淀粉利用的动态变化。结果表明:毛头鬼伞菌丝体对培养基中的综纤维素、木质素以及淀粉都有较好的利用,在淀粉含量高的情况下,毛头鬼伞菌丝体对综纤维素、木质素的利用表现出一种延迟。另外,通过分析毛头鬼伞菌丝体对综纤维素、木质素利用的比值,得出其对木质素利用的比值高。因此,在毛头鬼伞的稻草栽培培养基中添加适量的木屑是可行的。  相似文献   

7.
A holocellulose fraction was isolated from the inner bark of Psedotsuga menziesii and analyzed. It was composed of acid-insoluble lignin (3·1 acid-soluble lignin (4·1%), l-arabinose (2·6%), d-xylose (6.3%). d-mannose(9·5%), d-galactose (2·3%), and d-glcose (61·1%). The presence of these sugars and their configurations were positively established by the preparation of crystalline derivatives. The holocellulose was fractionated into its component polysaccharides, a xylan, a galactoglucomannan, a glucomannan, and a glucan-rich residue.  相似文献   

8.
The effects of Phanerochaete chrysosporium, a white rot fungus, on the chemical composition of Abies bornmülleriana and Fagus orientalis wood chips were investigated. After the chips were inoculated with the fungus, 20-, 40- and 60-day samples were analysed in order to determine the influence of fungal treatment on the chemical components of the cell walls, and the fibre properties of both species were measured. As a result of P. chrysosporium growth, both types of wood had slight relative increases in percentage cellulose. Percentage holocellulose showed statistically significant decreases and solubility values increased considerably. The lignin ratio for F. orientalis decreased significantly in relation to zero-time control samples.  相似文献   

9.
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.  相似文献   

10.
A central composite design was used to investigate the influence of the cooking conditions (time, temperature and phenol concentration) for wheat straw with phenol-water mixtures on the properties of the pulp obtained (yield and holocellulose, -cellulose, lignin and ethanol-benzene extractable contents) and the pH of the resulting wastewater. A second-order polynomial model consisting of three independent process variables was found to accurately describe the organosolv pulping of wheat straw. The equations derived predict the yield, the holocellulose, -cellulose, lignin and ethanol-benzene extractable contents of the pulp, and the pH of the wastewater with multiple-R, R2 and adjusted-R2 high values. The process variables must be set at low variables in order to ensure a high yield and pH. Conversely, if high holocellulose and -cellulose contents, and low lignin and ethanol-benzene extractable contents are desired, then a high temperature (200°C), long cooking time (120 min), and intermediate phenol concentration (65%) must be used.  相似文献   

11.
Wood decay activity of Omphalotus guepiniformis, one of the most frequently occurring fruiting bodies on beech coarse woody debris in cool temperate forests in Japan, was estimated in situ by chronosequence with a five decay class system. The decay columns of O. guepiniformis increased from decay class 1 to decay class 2, where they occupied 20.2% of the total area of cross sections, and was estimated to be a dominant basidiomycete. The decay columns of O. guepiniformis decreased after decay class 2 and were not detected in decay class 5. The relative density of the decay columns of O. guepiniformis decreased to 0.33 g cm−3 in decay class 2 (58.9% of fresh beech wood) but did not decrease thereafter. The lignocellulose index (LCI) of the decay columns of O. guepiniformis slightly decreased during the decay process while remaining in the range of white-rot. In contrast, the decay columns of microfungi increased in the later stages of decomposition and LCI of these decay columns decreased significantly alongside the decay process. These results suggest that O. guepiniformis has an important role in simultaneous decomposition of acid-unhydrolyzable residue (AUR, Klason lignin) and holocellulose in the early stages of beech log decomposition, while holocellulose selective decomposition by microfungi may occur in the late stages of decomposition.  相似文献   

12.
欧洲黑杨基因资源材性关联基因的SNP分析   总被引:9,自引:0,他引:9  
丁明明  黄秦军  苏晓华 《遗传》2008,30(6):795-800
以115个欧洲黑杨(Populus nigra L.)无性系为材料, 利用TaqMan技术分析了欧洲黑杨基因资源参与木质素和纤维素合成的酶(4CL、PAL和CesA2)的单核苷酸多态性, 并对分型的SNPs与木材材性性状(物理性状:基本密度、纤维长、纤维宽、微纤丝角; 化学性状: 木质素含量、纤维素含量、a 纤维素含量等)进行了相关分析。结果如下: (1)在对4CL、PAL和CesA2等3个基因进行检测时, 共获得27个SNPs标记, 对其中转换(A-G, C-T)有17个位点, 颠换(A-C, G-C, G-T, A-T等)有10个位点; (2)对其中的3个SNPs进行了分型, 分别记作SNP1、SNP2和SNP3; (2)对已经分型SNPs位点与材性性状进行方差分析, 结果显示, 3个SNPs中只有SNP1与4年生欧洲黑杨综纤维素含量显著相关, 表现为负效应, 贡献率为11.11%; (3)对欧洲黑杨4CL基因的SNP1标记的不同基因型所对应的材性性状进行方差分析, 结果显示基因型为CC和CT的欧洲黑杨相对于基因型为TT的欧洲黑杨有较高的纤维素含量。  相似文献   

13.
Beech cupule litter is the second largest (next to leaf litter) component of total annual litterfall in mast years, and makes an important contribution to carbon budgets in beech forest soils. We investigated the decomposition processes of beech cupule litter over a 30-month period with reference to the role of fungal succession in the decomposition of acid-unhydrolyzable residue (AUR) and holocellulose. During the study period, weight loss of holocellulose occurred, while there was little weight loss of AUR, and 77?% of the original cupule weight remained at the end of the study period. Xylaria sp.1, Geniculosporium sp. and Nigrospora sp. that can attack holocellulose selectively caused mass loss of holocellulose and were responsible for the cupule weight loss. Although the beech cupule is a woody phyllome and its lignocellulose composition is similar to that of coarse woody debris (CWD) rather than leaf litter of beech, the selective decomposition of holocellulose by fungi was similar to the decay process of leaf litter rather than CWD.  相似文献   

14.
Three field sites in the Hyblean region of Sicily were studied for their forage quality and botanical composition. A total of 70 plant species were analyzed. Another 36 were rare and of insufficient quantity for analysis. Forty-three bulk samples combining all existing species were also prepared and analyzed. The chemical analyses included were dry matter, ash, neutral-detergent fiber (NDF), acid-detergent fiber (ADF), lignin, total nitrogen, nonprotein nitrogen (NPN), soluble nitrogen and degradable protein. Quality varied over the growing season declining with forage maturity. The nutritional quality was high overall. Nongrass nonlegume species dominated. The most abundant species of high quality was a Compositae, Calendula arvensis, which represented approximately 22.8% of the available forage.  相似文献   

15.
Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm3/g in control samples to 783 and 600 cm3/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5–10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50°C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40°C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.  相似文献   

16.
A central composition design was developed to study the influence of process variables (temperature, pulping time and ethanol concentration) on the properties of the pulp produced (yield and holocellulose, alpha-cellulose and lignin contents) and the pH of the resulting wastewater, in the ethanol pulping of olive tree trimmings. The proposed equations reproduce the experimental results for the dependent variables with errors less than 5% for the holocellulose and alpha-cellulose contents, yield and wastewater pH, and less than 15% for the lignin content. Obtaining pulp with acceptably high yield (37.6%), high holocellulose and alpha-cellulose contents (above 88.8% and 46.9%, respectively), and low lignin contents (below 7.2%), entails operating at a pulping temperature of 200 degrees C, using an ethanol concentration of 75% and a pulping time of 60 min.  相似文献   

17.
Twelve white-rot fungi were grown in solid-state culture on lemon grass (Cymbopogon citratus) and citronella (Cymbopogon winterianus) bagasse. The two lignocellulosic substrates had 11% permanganate lignin and a holocellulose fraction of 58%. After 5 to 6 weeks at 20°C, nine fungi produced a solid residue from lemon grass with a higher in vitro dry matter enzyme digestibility than the original bagasse; seven did the same for citronella. The best fungus for both substrates was Bondarzewia berkeleyi; it increased the in vitro dry matter enzyme digestibility to 22 and 24% for lemon grass and citronella, respectively. The increases were correlated with weight loss and lignin loss. All fungi decreased lignin contents: 36% of the original value for lemon grass and 28% for citronella. Practically all fungi showed a preference for hemicellulose over cellulose.  相似文献   

18.
Decomposition of plant litter during the freeze-thaw season has recently gained attention as having a significant role in nutrient cycling in many cold ecosystems. However, few studies have examined decomposition of crop remnants during the freeze-thaw season in an agronomic setting when microbial activity is presumably low. We examined decomposition of four cultivars of sorghum (Sorghum bicolor) leaves in a field in Southern Minnesota, USA using the litterbag method. Three of the four cultivars we examined expressed the brown midrib (bmr) mutation which have altered/reduced levels of lignin in their secondary cell walls compared to the wild-type (WT). Litter was buried in the fall and harvested during the spring thaw. After 160 d the bmr mutants lost 57–62% of their initial mass, compared to 51% in the WT. Mass loss agreed with presumed initial litter quality, as the bmr litter had higher initial N, and holocellulose:lignin and lower lignin, C:N and lignin:N values compared to the WT. The increased decomposition of the bmr cultivars appears to be related to increased loss of hemicellulose and holocellulose (cellulose+hemicellulose) or higher initial N concentrations. Alterations in cell-wall deposition in the bmr cultivars may increase accessibility of microbial cell-wall degrading enzymes that accelerate mass loss. Our results demonstrate that alterations in initial lignin chemistry may influence decomposition of sorghum litter in an agronomic setting.  相似文献   

19.
用根癌农杆菌介导法将源于紫穗槐的尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)基因、反义4-香豆酸辅酶A连接酶(4CL)基因以及两者的双价基因分别转移至烟草中。PCR和Southern杂交检测证实外源基因已整合到转基因烟草基因组中。测定全纤维素和Klason木质素含量的结果显示,增强UGPase基因的表达可提高转基因植株的纤维素含量,但对木质素含量没有影响;抑制4CL基因的表达可显著降低转基因植株的木质素含量,但对纤维素含量没有影响;转移双价基因的转基因植株中纤维素含量增加而木质素含量降低。  相似文献   

20.
Progressive changes in solubility characteristics and lignin content of Pinus radiata sapwood were assessed when small blocks were subjected to decay by brown (Gloeophyllum trabeum) and white (Perenniporia tephropora) rot fungi. The brown rot species removed lignin in approximate proportion to weight loss up to 10%; thereafter the amount of lignin altered little. In contrast, the decline in lignin content was near linear for P. tephropora. Increases in solubility (particularly with hot water and dilute alkali), in sugar content and in the acidity of aqueous extracts were recorded in wood blocks decayed to 15–20% weight loss. While these effects were more pronounced in samples decayed by G. trabeum, it appears that with both organisms structural components were degraded faster than the products could be utilised. In this case, cell wall chemistry may not have been a major determinant of weight losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号