首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the alpha chain of human fibrinogen interacts directly with ADP-activated human platelets [Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., & Doolittle, R. F. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2068]. Now, we report that platelet receptor recognition domains are localized on two CNBr fragments of the human fibrinogen alpha chain. They encompass residues 92-147 and 518-584, which inhibit 125I-fibrinogen binding to ADP-stimulated platelets. The inhibitory CNBr fragment alpha 92-147 contains the RGD sequence at residues 95-97. Synthetic peptides encompassing this sequence were inhibitory while peptide 99-113 lacking the RGD sequence was inactive. The synthetic peptide RGDF, corresponding to residues alpha 95-98, inhibited the binding of 125I-fibrinogen to ADP-treated platelets (IC50 = 2 microM). However, the peptides containing sequence RGDF, with residues preceding Arg95 or following Phe98, were less inhibitory. It appears that the sequence alpha 95-98 constitutes a platelet receptor recognition domain which is constrained by flanking residues. The second inhibitory CNBr fragment, alpha 518-584, also contains the sequence RGD at positions 572-574. Synthetic peptides overlapping this sequence were inhibitory, while peptides lacking the sequence RGDS were not reactive. Thus, another platelet reactive site on the alpha chain encompasses residues 572-575 containing sequence RGDS. In conclusion, the platelet receptor recognition domains on the human fibrinogen alpha chain in the amino-terminal and in the carboxy-terminal zones contain the ubiquitous cell recognition sequence RGD shared with other known adhesive proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Binding of the adhesive ligand fibrinogen and the monoclonal antibody PAC1 to platelet glycoprotein (GP) IIb-IIIa is dependent on cell activation and inhibited by Arg-Gly-Asp (RGD)-containing peptides. Previously, we identified a sequence in a hypervariable region of PAC1 (mu-CDR3) that mimics the activity of the antibody. Here we examine whether monoclonal antibodies to this idiotypic determinant in PAC1 can mimic GP IIb-IIIa by binding to fibrinogen. Mice were immunized with a peptide derived from the mu-CDR3 of PAC1. Four antibodies were obtained that recognized fibrinogen as well as a recombinant form of the variable region of PAC1. However, they did not bind to other RGD-containing proteins, including von Willebrand factor, fibronectin, and vitronectin. Several studies suggested that these anti-PAC1 peptide antibodies were specific for GP IIb-IIIa recognition sites in fibrinogen. Three such sites have been proposed: two RGD-containing regions in the A alpha chain, and the COOH terminus of the gamma chain (gamma 400-411). Two of the antibodies inhibited fibrinogen binding to activated platelets, and all four antibodies bound to the fibrinogen A alpha chain on immunoblots. Antibody binding to immobilized fibrinogen was partially inhibited by monoclonal antibodies specific for the two A alpha chain RGD regions. However, the anti-PAC1 peptide antibodies also bound to plasmin-derived fibrinogen fragments X and D100, which contain gamma 400-411 but lack one or both A alpha RGD regions. This binding was inhibited by an antibody specific for gamma 400-411. When fragment D100 was converted to D80, which lacks gamma 400-411, antibody binding was reduced significantly (p less than 0.01). Electron microscopy of fibrinogen-antibody complexes confirmed that each antibody could bind to sites on the A alpha and gamma chains. These studies demonstrate that certain anti-PAC1 peptide antibodies mimic GP IIb-IIIa by binding to platelet recognition sites in fibrinogen. Furthermore, they suggest that the gamma 400-411 region of fibrinogen may exist in a conformation similar to that of an A alpha RGD region of the molecule.  相似文献   

3.
In order to perform a fundamental study of platelet substitutes, novel particles that bound to activated platelets were prepared using two oligopeptides conjugated to latex beads. The oligopeptides were CHHLGGAKQAGDV (H12), which is a fibrinogen gamma-chain carboxy-terminal sequence (gamma 400-411), and CGGRGDF (RGD), which contains a fibrinogen alpha-chain sequence (alpha 95-98 RGDF). Both peptides contained an additional amino-terminal cysteine to enable conjugation. Human serum albumin was adsorbed onto the surface of latex beads (average diameter 1microm) and pyridyldisulfide groups were chemically introduced into the adsorbed protein. H12 or RGD peptides were then chemically linked to the modified surface protein via disulfide linkages. H12- or RGD-conjugated latex beads prepared in this way enhanced the in vitro thrombus formation of activated platelets on collagen-immobilized plates under flowing thrombocytopenic-imitation blood. Based on the result of flow cytometric analyses of agglutination, PAC-1 binding, antiP-selectin antibody binding, and annexin V binding, the H12-conjugated latex beads showed minimal interaction with non-activated platelets. These results indicate the excellent potential of H12-conjugated particles as a candidate for a platelet substitute.  相似文献   

4.
Glycoprotein (GP) IIb-IIIa is the major fibrinogen receptor on platelets and participates in platelet aggregation at the site of a wound. Integrin alpha v beta 3, which contains an identical beta-subunit, is expressed on endothelial cells and also serves as a fibrinogen receptor. Here, we demonstrate by several criteria that purified GPIIb-IIIa and integrin alpha v beta 3 bind to distinct sites on fibrinogen. First, a plasmin-generated fragment of fibrinogen lacking the RGD sequence at residues 572-574 retained the ability to bind GPIIb-IIIa, but failed to bind integrin alpha v beta 3. Second, a monoclonal antibody which exclusively recognizes the RGD sequence at fibrinogen A alpha chain residues 572-574 abolished interaction between integrin alpha v beta 3 and fibrinogen, but had only a minimal effect on fibrinogen binding to GPIIb-IIIa. Finally, we show that the difference in recognition of sites on fibrinogen by these two integrins is probably a consequence of their remarkably different ligand binding properties. Peptides corresponding to fibrinogen gamma chain residues 400-411 effectively blocked RGD sequence and fibrinogen binding by GPIIb-IIIa, but had no effect on the ability of integrin alpha v beta 3 to bind these ligands. We also show that integrin alpha v beta 3 has a higher affinity than GPIIb-IIIa for a synthetic hexapeptide containing the RGD sequence. In fact, this RGD-containing peptide was 150-fold more effective at blocking fibrinogen binding to integrin alpha v beta 3 than to GPIIb-IIIa. Collectively, our results demonstrate that integrins alpha v beta 3 and GPIIb-IIIa display qualitative and quantitative differences in their ligand binding properties, as is evident by their ability to interact with synthetic peptides. The ultimate result of these differences is the recognition of distinct sites on fibrinogen by the two integrins. These observations may have relevance in the processes of hemostasis and wound healing.  相似文献   

5.
The platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) recognizes peptides containing the amino acid sequence Arg-Gly-Asp, a sequence present at two locations in the alpha chain of fibrinogen. GPIIb-IIIa also interacts with peptides containing the carboxyl-terminal 10-15 residues of the fibrinogen gamma chain. We found that the alpha chain tetrapeptide, Arg-Gly-Asp-Ser (RGDS), and the gamma chain peptide, Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (LGGAKQAG-DV), each inhibited fibrinogen binding to ADP-stimulated platelets with Ki values of 15.6 +/- 2.7 and 46.2 +/- 8.2 microM, respectively. Furthermore, the inhibitory effect of the peptides was additive, indicating that they interact with GPIIb-IIIa in a mutually exclusive manner. Mutually exclusive binding suggests that either the alpha and gamma chain peptides bind to identical or overlapping sites on the GPIIb-IIIa complex or that one peptide induces a change in the complex that excludes the other. To differentiate between these possibilities, we compared the ability of RGDS and LGGAKQAGDV to inhibit the binding of fibrinogen and two GPIIb-IIIa complex-specific monoclonal antibodies, A2A9 and PAC-1, to ADP-stimulated platelets. A2A9 and PAC-1 appear to bind to different sites on GPIIb-IIIa because A2A9 binds to both stimulated and unstimulated platelets while PAC-1 only binds to stimulated platelets. RGDS specifically inhibited fibrinogen and PAC-1 binding with nearly identical Ki values of 15.6 +/- 2.7 and 20.2 +/- 3.5 microM, respectively. In contrast, LGGAKQAGDV had a differential effect on fibrinogen and PAC-1 binding, inhibiting PAC-1 binding with a Ki of 116.1 +/- 12.9 microM and fibrinogen binding with a Ki of 46.2 +/- 8.2 microM (p less than 0.005). Furthermore, while RGDS had no effect on the binding of the monoclonal antibody A2A9, LGGAKQAGDV was a partial inhibitor of A2A9 binding to activated platelets. These results suggest that the bindings sites for RGDS and LGGAKQAGDV are spatially distinct. They also suggest that ligand-induced changes in GPIIb-IIIa conformation are likely to be responsible for the mutually exclusive nature of alpha and gamma chain peptide binding.  相似文献   

6.
Platelet receptor recognition domains are located on the gamma and alpha chains of human fibrinogen. The former encompasses residues 400-411 [Kloczewiak, M., Timmons, S., Lukas, T. J., & Hawiger, J. (1984) Biochemistry 23, 1767], and the latter is present in two loci on the alpha chain (alpha 95-97 and alpha 572-574) [Hawiger, J., Kloczewiak, M., Bednarek, M. A., & Timmons, S. (1989) Biochemistry (first of three papers in this issue)]. Peptide gamma 400-411 (HHLGGAKQAGDV) inhibited aggregation of ADP-treated platelets mediated not only by gamma-chain but also by alpha-chain multimers. Peptide alpha 572-575 (RGDS) inhibited aggregation of platelets mediated by alpha-chain as well as gamma-chain multimers. These results indicate that the platelet receptor for fibrinogen is isospecific with regard to the domain present on alpha and gamma chains. Subsequent "checkerboard" analysis of combinations of gamma 400-411 and alpha 572-575 showed that the inhibitory effect toward binding of 125I-fibrinogen was additive rather than synergistic. Next, a series of "hybrid" peptides was constructed in which the alpha-chain sequence RGDF (alpha 95-98) replaced the carboxy-terminal segment of gamma 408-411. The dodecapeptide HHLGGAKQRGDF was inhibitory with concentration, causing 50% inhibition of binding (IC50) at 6 microM, 5 times more potent than gamma 400-411. The shorter peptides AKQRGDF and KQRGDF were also more inhibitory than gamma 400-411. The second series of hybrid peptides was constructed with the alpha-chain sequence RGDS preceding the sequence of gamma 400-411 or sequence RGDV following it.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Fibrinogen/fibrin and its proteolytic fragments serve as potential adhesive substrates during thrombosis, wound healing, and cancer. In this report we examined the biological response of human melanoma cells exposed to fibrinogen and its naturally occurring plasmic breakdown products that are known constituents of the tumor stroma. Plasmin treatment of fibrinogen first results in fragment X, which is characterized by removal of the COOH-terminal portion of the alpha chain including an RGD sequence (A alpha 572-575). Further digestion leads to fragment D comprising primarily an intact COOH-terminal stretch of the gamma chain containing the platelet adhesion sequence HHLGGAKQAGDV. In a sensitive adhesion assay M21 human melanoma cells utilized integrin alpha v beta 3 to attach to all three of these ligands. However, only intact fibrinogen promoted significant cell spreading, while fragment X produced minimal spreading and fragment D promoted only adhesion. These results indicate that fibrinogen contains at least two alpha v beta 3-dependent adhesive sites and these promote distinct biological responses of human melanoma cells. The differential functional properties of these ligands directly correlate to their relative binding affinity for purified alpha v beta 3 as measured in a solid-phase receptor binding assay. These results provide evidence that a single integrin can promote distinct biological signals depending on the molecular nature of the ligand binding event.  相似文献   

8.
A chemical cross-linking approach has been used to characterize the interaction of platelets with small peptides of 7 and 14 residues containing the arginyl-glycyl-aspartic acid (RGD) sequence recognized by a variety of cellular adhesion receptors. The radioiodinated peptides were bound to platelets, and chemical cross-linking was attained by subsequent addition of bifunctional reagents. Three different cross-linking reagents coupled the RGD-containing peptides to platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa), and both subunits of this platelet membrane glycoprotein became radiolabeled with the RGD peptides. Platelet stimulation with agonists including thrombin, phorbol myristrate acetate, and ADP increased the extent of cross-linking by predominantly enhancing the coupling of the RGD peptides to the GPIIIa subunit. Cross-linking of the labeled RGD peptides to GPIIb and GPIIIa on stimulated and nonstimulated platelets exhibited structural specificity and was inhibited by excess nonlabeled RGD peptides. The interactions were inhibited by nonlabeled RGD peptides and a peptide with an amino acid sequence corresponding to the carboxyl terminus of the gamma chain of fibrinogen but less effectively by an arginyl-glycyl-glutamic acid peptide. Cross-linking of the RGD peptides to GPIIb-IIIa was divalent ion-dependent and, on stimulated platelets, was inhibited by the adhesive proteins fibrinogen and fibronectin, but not by albumin. These results indicate that the RGD-binding sites on platelets reside in close proximity to both subunits of GPIIb-IIIa and that platelet stimulation alters the topography of these sites such that the peptides become more efficiently cross-linked to GPIIIa.  相似文献   

9.
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3.  相似文献   

10.
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins.  相似文献   

11.
The extreme carboxyl-terminal amino acid sequence of the gamma chain of fibrinogen is involved in the binding of this adhesive protein to the platelet integrin glycoprotein (GP) IIb-IIIa, and synthetic peptides corresponding to this region inhibit fibrinogen as well as fibronectin and von Willebrand factor binding to platelets. A chemical cross-linking approach was used to characterize the interaction of a 16-amino acid fibrinogen gamma chain peptide with platelets and to localize the site of its binding to GPIIb-IIIa. This peptide became specifically cross-linked to GPIIb, and platelet stimulation selectively enhanced its cross-linking to this alpha subunit. The cross-linking reaction was specifically inhibited by fibrinogen and an Arg-Gly-Asp peptide but not by an unrelated protein or a substituted peptide. Utilizing a combination of immunochemical mapping, enzymatic and chemical digestions, and amino acid sequencing, the cross-linking site of the gamma chain peptide in GPIIb was localized to a stretch of 21 amino acids. The identified region, GPIIb 294-314, contains the second putative calcium binding domain within GPIIb. The primary structure of this region is highly conserved among alpha subunits of other integrin adhesion receptors. These results identify a discrete region of GPIIb that resides in close proximity to a ligand binding site within GPIIb-IIIa. The homologous region may be involved in the functions of other integrin receptors.  相似文献   

12.
The cytoadhesins represent a group of RGD receptors that belongs to the integrin superfamily of adhesion molecules. Members of this cytoadhesin family include the platelet GPIIb-IIIa and the vitronectin receptors. These glycoproteins share the same beta-subunit, which is associated with different alpha subunits to form an alpha/beta heterodimer. In the present study, we have analyzed the fine recognition specificy of the cytoadhesins from platelets and endothelial cells for the adhesive protein, fibrinogen. Two sets of synthetic peptides, RGDX peptides and peptides corresponding to the COOH terminus of the fibrinogen gamma chain, were compared for their structure-function relationships in the two cellular systems. The results indicate that: (a) both RGDX and gamma-chain peptides inhibit the binding of fibrinogen to platelets and endothelial cells; (b) a marked influence of the residue at the COOH- and NH2-terminal positions of each peptide set can be demonstrated on the two types; and (c) RGDX and gamma peptides have differential effects on platelets and endothelial cells with respect to fine structural requirements. These results clearly indicate that while the platelet and endothelial cytoadhesins may interact with similar peptidic sequences, they express a different fine structural recognition.  相似文献   

13.
RGD (arginine-glycine-aspartic acid) is a known peptide sequence that binds platelet integrin GPIIbIIIa and disrupts platelet-fibrinogen binding and platelet cross-linking during thrombosis. RGD peptides are unsuitable for clinical applications due to their high 50% inhibitory concentration (IC50) and low in vivo residence times. We addressed these issues by conjugating RGD peptides to biocompatible macromolecular carriers: hyperbranched polyglycerols (HPG) via divinyl sulfone. The GPIIbIIIa binding activity of RGD was maintained after conjugation and the effectiveness of the HPG-RGD conjugate was dependent upon molecular weight and the number of RGD peptides attached to each HPG molecule. These polyvalent inhibitors of platelet aggregation decreased the IC50 of RGD in an inverse linear manner based on the number of RGD peptides per HPG. Since HPG-RGD conjugates do not cause platelet activation by degranulation and certain substitution ratios do not increase fibrinogen binding to resting platelets, HPG-RGD may serve as a model for a novel class of antithrombotics.  相似文献   

14.
Endothelial cells and activated platelets express integrin-type receptors responsible for adhesion to fibrinogen. We have located distinct integrin-directed endothelial cell and platelet attachment sites on immobilized fibrinogen using a combination of synthetic peptides, fibrinogen fragments, and specific anti-peptide monoclonal antibodies. Endothelial cells exclusively recognize an Arg-Gly-Asp-containing site near the C-terminus of the alpha chain (alpha residues 572-574) but fail to recognize the Arg-Gly-Asp sequence in the N-terminal region of the same chain (alpha residues 95-97). In contrast, platelets do not require either Arg-Gly-Asp sequence for binding to intact fibrinogen and are capable of recognizing, in addition to the alpha 572-574 sequence, a site at the C-terminus of the gamma chain (gamma residues 400-411). These data suggest a molecular mechanism whereby platelets and endothelial cells interact with distinct sites on the fibrinogen molecule during hemostasis and wound healing.  相似文献   

15.
The binding of fibrinogen to its platelet receptor, the glycoprotein IIb-IIIa complex, is mediated, in part, by an Arg-Gly-Asp (RGD) sequence within the fibrinogen A alpha chain. PAC1 is an IgM-kappa murine monoclonal antibody that binds to the platelet fibrinogen receptor, and its binding is inhibited by both fibrinogen and RGD-containing peptides. To identify the regions of PAC1 that interact with the fibrinogen receptor, we determined the mRNA sequences of PAC1 immunoglobulin heavy and light chain variable regions. Five out of the six complementarity-determining regions (CDRs) of PAC1 had entirely germline sequences with no regions of similarity to fibrinogen. However, CDR3 of the PAC1 heavy chain (H-CDR3) was very large and unique due to the insertion of a novel D region segment. H-CDR3 contained a sequence, Arg-Tyr-Asp (RYD), that, if present in the proper conformation, might behave like the RGD sequence in fibrinogen. A 21-residue synthetic peptide encompassing the H-CDR3 region inhibited fibrinogen-dependent platelet aggregation as well as the binding of PAC1 (Ki = 10 microM) and fibrinogen (Ki = 5 microM) to activated platelets. The RYD region of H-CDR3 appeared to be central to its function, because substitution of the tyrosine with glycine increased the inhibitory potency of the peptide by 10-fold, while replacing the tyrosine with D-alanine or inverting the RYD sequence sharply reduced the inhibitory potency. Thus, the linear sequence, RYD, within H-CDR3 of PAC1 appears to mimic the RGD receptor recognition sequence in fibrinogen. This type of immunologic approach could be useful in studying the structural basis of other receptor-ligand interactions.  相似文献   

16.
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine, in a platelet membrane environment, the activated versus nonactivated status of this domain, we have produced a monoclonal antibody against a synthetic peptide (residues 109-128) located within the RGD-binding region on GPIIIa. This kappa-IgM, named AC7, was specific for GPIIIa peptide 109-128 and interacted only with activated platelets. Fibrinogen, RGDF peptide, and the fibrinogen phi chain decapeptide LGGAKQAGDV inhibited the binding of AC7 to ADP-stimulated platelets. AC7 IgM and "small fragments" inhibited fibrinogen binding and platelet aggregation in a dose-dependent fashion. Induction of AC7 binding by D33C, a monoclonal antibody recognizing the GPIIb 426-437 sequence and stimulating fibrinogen binding, indicated that the GPIIb 426-437 and the GPIIIa 109-128 sequences were both involved in a stimulation-dependent conformational modification of the receptor. AC7 was able to recognize beta subunits other than GPIIIa on leucocyte surfaces but only after cell fixation with glutaraldehyde. The results are consistent with the implication of the RGD-binding domain in receptor ligand interaction on the platelet surface and its conformational modification and exposure upon receptor induction.  相似文献   

17.
Synthetic peptides corresponding to the carboxyl terminus of the fibrinogen gamma chain inhibit the binding of fibrinogen, fibronectin, and von Willebrand factor to platelets, yet the active decapeptide sequence has only been found in fibrinogen to date. In contrast, all three proteins contain Arg-Gly-Asp sequences, and peptides containing Arg-Gly-Asp are potent inhibitors of their binding to activated platelets. We have analyzed the relationship between these peptide sets by direct binding assays. H12 (gamma 400-411) inhibited the binding of an Arg-Gly-Asp-containing peptide to platelets with similar dose response to inhibition of fibronectin binding. We have previously reported that GPIIb-IIIa binds to immobilized Arg-Gly-Asp peptides and can be eluted by Arg-Gly-Asp-containing peptides in solution. Both H12 and L10 (gamma 402-411) completely eluted GPIIb-IIIa bound to immobilized Arg-Gly-Asp peptides. Conversely, when GPIIb-IIIa was bound to immobilized L10, either L10 or an Arg-Gly-Asp peptide could elute it. Peptide specificity was established by the failure of Gly-Arg-Gly-Glu-Ser-Pro or acetylated L10 to elute GPIIb-IIIa from the immobilized peptides. These results indicate that the two peptide sets interact with the same receptor which contains GPIIb-IIIa.  相似文献   

18.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

19.
The non-covalent and Ca(2+)-dependent heterodimer GPIIb/IIIa, formed by platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa), also known as the integrin alpha IIb beta 3, is the inducible receptor for fibrinogen and other adhesive proteins on the surface of activated platelets. A fraction of the isolated GPIIb/IIIa in solution binds RGD or KQAGDV inhibitory peptides and, upon peptide removal, apparently acquires the capacity to bind fibrinogen ('activated' GPIIb/IIIa) [Du, X., Plow, E. F., Frelinger, A. L., III, O'Toole, T. E., Loftus, J. C. & Ginsberg, M. H. (1991) Cell 65, 409-416]. Photoaffinity labelling was used here to study the ligand binding site(s) of GPIIb/IIIa in solution, for which the peptides CKRKRKRKRRGDV (alpha 1), CGRGDF (alpha 2), CYHHLGGAKQAGDV (gamma 1) and CGAKQAGDV (gamma 2) were synthesized with a photoactivable cross-linker group and a fluorescent reporter group attached to the N-terminal cysteine residue. Contrary to the situation in activated platelets, both GPIIb and GPIIIa were equally labelled by the four peptides and the cross-linking sites were localized by protein chemical analyses of the fluorescently labelled tryptic peptides of both subunits. Thus, the localization of the cross-linking sites in GPIIb varies considerably with the peptide length and is very different from that localization observed in activated platelets: alpha 2 and gamma 2 were found cross-linked to the N-terminal of both the heavy (GPIIbH 42-73) and the light (GPIIbL2 30-75) chains of GPIIb; while the longer peptides alpha 1 and gamma 1 were cross-linked to the C-terminal of GPIIbH within the 696-724 and 752-768 peptide stretches, respectively. On the other hand, the cross-linking sites of the four inhibitory peptides in GPIIIa were found mainly within the proteolysis susceptible region, between the N-terminal (GPIIIa 1-52) and the core (GPIIb 423-622) highly disulphide-bonded domains, observing that the longer the peptide the closer the cross-linking site is to the N-terminal of GPIIIa: alpha 1 at GPIIIa 63-87 and 303-350; gamma 1 at GPIIIa 9-37; alpha 2 at GPIIIa 151-191; and gamma 2 at GPIIIa 303-350. These results led us to the following conclusions. (a) The GPIIIa 100-400 region contributes to the ligand-binding domain in GPIIb/IIIa both in solution and in activated platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号