首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution of four enzymes (glucose-6-phosphatase, phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase) in the midgut of “wandering” fifth-instar larvae of the tobacco hornworm, Manduca sexta (L), was determined and the composition of mitochondrial and microsomal pellets was examined by electron microscopy. Most of the glucose-6-phosphatase activity and one-third of the phosphodiesterase I activity were found in the high-speed supernatant. NADPH-cytochrome c reductase activity was marginal and O-demethylase activity was undetectable in the supernatant. The highest specific activities for phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase were measured in microsomes, but the relative specific activity of phosphodiesterase I was only half that obtained with the latter two enzymes. In all subcellular preparations the relative specific activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase were closely correlated. It is concluded that glucose-6-phosphatase and phosphodiesterase I are not microsomal marker enzymes in the midgut, but the activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase are quantitative measures of microsomal content.  相似文献   

2.
Phenotypic manifestations of Vrn(vernalization) and Ppd (photoperiod) genes responsible for transition of bread wheat Triticum aestivumL. to generative growth (flowering) are mutually related. Since the mechanism of phytochrome-induced photoperiodism involves the enzymes of cyclic adenosine monophosphate metabolism, and phosphodiesterase in particular, we tested involvement of phosphodiesterase in the process of winter wheat vernalization and formation of flowering competence in alternate wheat requiring a long photoperiod but no vernalization for its transition to flowering. We studied temperature dependence of phosphodiesterase activity in vernalized and unvernalized winter wheat on the one hand and in etiolated and red light illuminated seedlings of alternate wheat on the other hand. Short-term experiments demonstrated that red light illumination is similar to long photoperiod by the effect on the long-day plants. Both influences induced a pronounced inversion of the temperature profile of phosphodiesterase activity in the 28–45°C range. We propose that phosphodiesterase is involved in vernalization and can serve as a receptor of low temperature in winter wheat. Changed temperature profile is a radical control mechanism of phosphodiesterase activity in response to the influences (red light and vernalizing temperatures) responsible for competence of various bread wheat forms for generative growth.  相似文献   

3.
Salmonella Typhimurium gene STM2215 (rtn) is conserved among many enterobacteriaceae. Mutants lacking STM2215 poorly colonized the liver and spleen in intraperitoneal infection of mice and poorly colonized the intestine and deeper tissues in oral infection. These phenotypes were complemented by a wild‐type copy of STM2215 provided in trans. STM2215 deletion mutants grew normally in J774A.1 murine macrophages but were unable to invade Caco‐2 colonic epithelial cells. Consistent with this finding, mutants in STM2215 produced lower levels of effectors of the TTSS‐1. STM2215 is a predicted c‐di‐GMP phosphodiesterase, but lacks identifiable sensor domains. Biochemical analysis of STM2215 determined that it is located in the inner membrane and has c‐di‐GMP phosphodiesterase activity in vitro dependent on an intact EAL motif. Unlike some previously identified members of this family, STM2215 did not affect motility, was expressed on plates, and in liquid media at late exponential and early stationary phase during growth. Defined mutations in STM2215 revealed that neither the predicted periplasmic domain nor the anchoring of the protein to the inner membrane is necessary for the activity of this protein during infection. However, the EAL domain of STM2215 is required during infection, suggesting that its phosphodiesterase activity is necessary during infection.  相似文献   

4.
SYNOPSIS. Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in Tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction: the activities were optimal at pH 8.0–9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2-. A kinetic analysis of the properties of the enzymes yielded 2 apparent KIII values ranging in concentration from 0.5 to 50 μM and from 0.1 to 62 μ M for cyclic AMP and GMP. respectively. A Ca2+-dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, Tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. the results suggested that Tetrahymena might contain 2 types of Ca2+-dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

5.
Abstract— The activity of cyclic AMP phosphodiesterase of rat cerebral homogenates increased several-fold between 1 and 60 days of age. Enzyme activity in the cerebellum, on the other hand, did not increase during this period. A kinetic analysis of the phosphodiesterase activity revealed evidence for multiple forms of the enzyme and indicated that the postnatal increase in phosphodiesterase activity of rat cerebrum was due almost exclusively to the high Km enzyme. In cerebellum, the ratio of the high and low Km enzyme remained fairly constant during ontogenetic development. Physical separation of the phosphodiesterases contained in 100,000 g soluble supernatant fractions of sonicated brain homogenates by polyacrylamide disc gel electrophoresis confirmed the presence of multiple enzyme forms. In adult rats we found six distinct peaks of phosphodiesterase activity (designated I to VI according to the order in which they were eluted from the column) in cerebellum and 4 forms of the enzyme (Peaks I through IV) in cerebrum. Brains of newborn rats had a different pattern and ratio of phosphodiesterase activities. For example, Peak I phosphodiesterase was undetectable in cerebrum or cerebellum of newborn rats. Moreover, in the cerebellum of newborn rats Peak II was the dominant peak whereas in the cerebellum of adult rats Peak III was the largest peak. A comparison of the multiple forms of phosphodiesterase from the cerebrum of newborn and adult animals suggested that the postnatal increase in phosphodiesterase activity previously seen in crude homogenates was due largely to an increase in a high K, Peak II phosphodiesterase. The ratios of activities of the other peaks and their sensitivities to an activator of phosphodiesterase were similar in newborn and adult rats. An endogenous heat-stable activator of phosphodiesterase was found in cerebrum, cerebellum and brain stem. In newborn rats, the cerebellum contained several-fold less activity of this activator than did cerebrum or brain stem. However, the activity of this activator increased with age in the cerebellum and would appear to have decreased postnatally in cerebrum and brain stem. These results suggest that some multiple forms of phosphodiesterase can develop independently and that changes in activities of these phosphodiesterases may occur by increases in the quantity of enzyme or by changes in the quantity of an endogenous activator of phosphodiesterase.  相似文献   

6.
The epidermal growth factor receptor (EGFR) is important for normal homeostasis in a variety of tissues and, when abnormally expressed or mutated, contributes to the development of many diseases. However, in vivo functional studies are hindered by the lack of adult mice lacking EGFR because of the pre‐ and postnatal lethality of EGFR deficient mice. We generated a conditional allele of Egfr (Egfrtm1Dwt) by flanking exon 3 with loxP sites in order to investigate tissue‐specific functions of this widely expressed receptor tyrosine kinase. The activity of the Egfrtm1Dwt allele is indistinguishable from wildtype Egfr. Conversely, the EgfrΔ allele, generated by Cre‐mediated deletion of exon 3 using the germline EIIa‐Cre transgenic line, functions as a null allele. EgfrΔ/Δ embryos that have complete ablation of EGFR activity and die at mid‐gestation with placental defects identical to those reported for mice homozygous for the Egfrtm1Mag null allele. We also inactivated the Egfrtm1Dwt allele tissue‐specifically in the skin epithelium using the K14‐Cre transgenic line. These mice were viable but exhibited wavy coat hair remarkably similar to mice homozygous for the Egfrwa2 hypomorphic allele or heterozygous for the EgfrWa5 antimorphic allele. These results suggest that the hairless phenotype of Egfr nullizygous mice is not solely due to absence of EGFR in the epithelium, but that EGFR activity is required also in skin stromal cells for normal hair morphogenesis. This new mouse model should have wide utility to inactivate Egfr conditionally for functional analysis of EGFR in adult tissues and disease states. genesis 47:85–92, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Experiments with glycerophosphocholine phosphodiesterase (GPC diesterase, EC 3.1.4.2.) in rat brain microsomes suggest that, although its activity is inhibited by low concentrations of calmidazolium, its dependence on Ca2+ ions is not modulated by calmoulin. The activity of glycerophosphocholine choline phosphodiesterase (choline phosphohydrolase, EC 3.1.4.38) was much lower than that of the GPC diesterase. A relatively inexpensive method for the preparation ofsn-glycero-3-phospho [Me-14C]choline is described.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

8.
The third intron of barley (Hordeum vulgare L.) β-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with β-amylase activity and thermostability. The third intron of Bmy1 in 40 barley genotypes was sequenced and aligned with 15 Bmy1 intron III sequences from GenBank and four alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were identified based on indels of 126, 38, 11, and 21 bp. β-Amylase activity and thermostability were assayed in 22 North American cultivars and 12 wild barley genotypes. Cultivars carrying the Bmy1.a and Bmy1.b alleles had β-amylase activity ranges calculated on a fresh weight (FW) basis of 1.8- and 1.5-fold, respectively, and thermostability ranges of 8.8- and 1.2-fold, respectively. β-Amylase activity calculated on a protein basis yielded a 2.4- and 1.4-fold range for Bmy1.a and Bmy1.b, respectively. Significantly different activities were observed in cultivars carrying either Bmy1.a or the Bmy1.b allele when calculated on a FW basis and the Bmy1.a allele when calculated on a protein basis. Significantly different thermostabilities were observed in cultivars carrying the Bmy1.a allele. Wild barleys were found to carry Bmy1.a, Bmy1.b, and Bmy1.c alleles with β-amylase activity ranges calculated on a FW basis of 1.7-, 1.7-, and 2.6-fold, respectively, and thermostability ranges of 1.3-, 1.4-, and 2.1-fold, respectively. β-Amylase activity measured on a protein basis identified a 1.3-, 1.4-, and 2.1-fold range for Bmy1.a, Bmy1.b, and Bmy1.c, respectively. Significantly different activities were found in genotypes with any of these three alleles when calculated on a FW basis yet only in those with the Bmy1.c allele when calculated on a protein basis. Significantly different thermostabilities in genotypes carrying either the Bmy1.b or Bmy1.c allele were observed. In the germplasm studied here, the Bmy1 intron III alleles are not reliable predictors of β-amylase activity and thermostability.  相似文献   

9.
This study was designed to understand the cellular mechanisms responsible for defects in the insulin-stimulated signal transduction pathway in a type 2 diabetic animal model. We examined the in vitro PC-1 phosphodiesterase activity and glucose uptake in adipose tissue of streptozotocin (STZ)-induced type 2 diabetic rats. The PC-1 activity was significantly increased in adipose tissue of diabetic rats (0.54 ± 0.08 nmol PNTP hydrolyzed/mg protein/min) compared with controls (0.29 ± 0.05 nmol PNTP hydrolyzed/mg protein/min, p < 0.05). Upon insulin stimulation (100 nM), glucose uptake in the adipose tissue of the controls (4.17 ± 1.28×10−8 μmol/mg/min) was significantly higher than that in the diabetic rats (1.26 ± 0.35×10−8; p < 0.05). These results suggest that elevated PC-1 phosphodiesterase activity and decreased glucose uptake in adipose tissues may be acquired characteristics contributing to the development of type 2 diabetes mellitus.  相似文献   

10.
Summary Chemogenetic investigations and precursor experiments on flowers of Petunia hybrida suggest that recessive alleles of the gene An3 block the biosynthetic pathway of flavonols and anthocyanins between the flavanone and dihydroflavonol step. In confirmation of this hypothesis, activity of the enzyme flavanone 3-hydroxylase, which catalyses the conversion of flavanones to dihydroflavonols, was readily demonstrated in enzyme preparations from flowers of lines with the dominant allele An3, whereas no or very low activity could be found in extracts from lines with recessive alleles (an3an3). A second genetic factor is described which clearly reduces the amount of flavonols in the flowers but not the amount of anthocyanins. Crossing experiments revealed that this factor represents a third allele of the An3 gene. It is referred to as an3-1. As expected, a residual flavanone 3-hydroxylase activity of about 10% could be found in enzyme extracts from plants with the an3-1 allele. The decreased level of dihydroflavonol formed under this condition is obviously still sufficient for anthocyanin formation but not for flavonol synthesis.Similar to flavanone 3-hydroxylases from other plants, the enzyme of Petunia is a soluble enzyme and belongs according to its cofactor requirements to the 2-oxoglutarate-dependent dioxygenases. The residual flavanone 3-hydroxylase activity found in plants with the an3-1 allele is identical to the activity extracted from An3-genotypes with regard to cofactors, substrate specificity and most of the inhibitors. The difference observed in the respective pH-optima and the genetic data suggest that the mutation providing the an3-1 phenotype is localized in the structural gene for flavanone 3-hydroxylase.  相似文献   

11.
Paraoxonase is an HDL-associated enzyme that plays a preventive role against oxidative stres. Previous studies suggested that involved an amino acid substitution at position 192 gives rise to two alloenzymes with a low activity (Q allele) and a high activity (R allele) towards paraoxon. There also exists a second polymorphism of the human PON1 gene affecting amino acid 55, giving rise to a leucine (L-allele) substitution for methionine (M-allele). PON1 gene polymorphisms were studied in 50 patients with osteosarcoma and 50 healthy controls. Paraoxonase genotypes were determined by PCR–RFLP. We found a reduction in the frequency of PON1 192 R allele in patients (P = 0.015). Besides, PON1 192 wild type QQ genotype (P = 0.015) and PON1 55 wild type L allele (P = 0.001) were higher in patients compared to healthy controls. PON1 192 QQ genotype was associated with osteosarcoma in multivariate logistic regression analysis. Our findings have suggested that PON1 192 wild type genotypes may be associated with a risk of developing osteosarcoma.  相似文献   

12.
13.
Petreikov M  Shen S  Yeselson Y  Levin I  Bar M  Schaffer AA 《Planta》2006,224(6):1465-1479
Tomato plants (Solanum lycopersicum) harboring the allele for the AGPase large subunit (AgpL1) derived from the wild species Solanum habrochaites (AgpL1 H ) are characterized by higher AGPase activity and increased starch content in the immature fruit, as well as higher soluble solids in the mature fruit following the breakdown of the transient starch, as compared to fruits from plants harboring the cultivated tomato allele (AgpL1 E ). Comparisons of AGPase subunit gene expression and protein levels during fruit development indicate that the increase in AGPase activity correlates with a prolonged expression of the AgpL1 gene in the AgpL1 H high starch line, leading to an extended presence of the L1 protein. The S1 (small subunit) protein also remained for an extended period of fruit development in the AgpL1 H fruit, linked to the presence of the L1 protein. There were no discernible differences between the kinetic characteristics of the partially purified AGPase-L1E and AGPase-L1H enzymes. The results indicate that the increased activity of AGPase in the AgpL1 H tomatoes is due to the extended expression of the regulatory L1 and to the subsequent stability of the heterotetramer in the presence of the L1 protein, implying a role for the large subunit not only in the allosteric control of AGPase activity but also in the stability of the AGPase L1–S1 heterotetramer. The introgression line of S. lycopersicum containing the wild species AgpL1 H allele is a novel example of transgressive heterosis in which the hybrid multimeric enzyme shows higher activity due to a modulated temporal expression of one of the subunits.  相似文献   

14.
The triphenylethylene antiestrogen trans-tamoxifen is an effective antitumor agent used in the treatment of human breast cancer. While the antiestrogenic activity of trans-tamoxifen clearly plays an important role in its tumoricidal action, some of the biological effects of trans-tamoxifen are independent of estrogen. Therapeutic concentrations of trans-tamoxifen inhibit protein kinase C (PKC) and calmodulin-dependent enzymes. PKC and calmodulin play critical roles in growth regulation, and there is evidence that inhibition of PKC and calmodulin by trans-tamoxifen may contribute to the antiumor activity of the drug in vivo. The geometric isomers cis- and trans-tamoxifen have a number of opposing biological activities that have been attributed to their interactions with the estrogen receptor, Cis-tamoxifen is generally estrogenic, whereas trans-tamoxifen is generally antiestrogenic. In this report, we compared the effects of cis- and trans-tamoxifen on PKC activity and on calmodulin-dependent cAMP phosphodiesterase activity. Cis- and trans-tamoxifen inhibited the Ca2+- and phosphatidylserine- (PS-) dependent activity of purified rat brain PKC with indistinguishable potencies, but cis-tamoxifen was somewhat more potent than the trans isomer in the inhibition of the Ca2+- and PS-independent activity of PKC. In addition, cis-tamoxifen was the more potent isomer in the inhibition of T lymphocyte activation, an event that entails a PKC-requiring signal transduction pathway. A modest preference of the cis isomer was also observed in the inhibition of a calmodulin-dependent cAMP phosphodiesterase. These results suggest a congruence between triphenylethylene binding sites on PKC and on the activated calmodulin–cAMP phosphodiesterase complex. We conclude that the interactions of cis- and trans-tamoxifen with PKC and the activated calmodulin–cAMP phosphodiesterase complex offer a criterion for distinguishing biological effects of triphenylethylenes that are due to interactions with the estrogen receptor from the biological effects resulting from their inhibitory activities against PKC and calmodulin-dependent processes.  相似文献   

15.
Summary A new mutation has been described which confers resistance to catabolite repression in Saccharomyces cerevisiae. The mutant allele, termed grr-1 for glucose repression-resistant, is characterized by insensitivity to glucose repression for the cytoplasmic enzymes invertase, maltase, and galactokinase, as well as the mitochondrial enzyme cytochrome c oxidase. Hexokinase levels in grr-1 mutants are approximately 3-fold higher than the corresponding activity of the parental strain. Although the grr-1 allele is expressed phenotypically similarly to the hex-1 (hxk-2) and hex-2 mutations described by Entian et al. (1977) and Zimmermann and Scheel (1977) respectively, we have shown genetically and physiologically that grr-1 represents a new class of mutation.  相似文献   

16.
Imisun and CLPlus are two imidazolinone (IMI) tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of different alleles at the same locus, Ahasl1-1 and Ahasl1-3, respectively. This paper reports the level of tolerance expressed by plants containing both alleles in a homozygous, heterozygous and in a heterozygous stacked state to increasing doses of IMI at the enzyme and whole plant levels. Six genotypes of the Ahasl1 gene were compared with each other in three different genetic backgrounds. These materials were treated at the V2–V4 stage with increasing doses of imazapyr (from 0 to 480 g a.i. ha–1) followed by an assessment of the aboveground biomass and herbicide phytotoxicity. The estimated dose of imazapyr required to reduce biomass accumulation by 50% (GR50) differed statistically for the six genotypes of the Ahasl1 gene. Homozygous CLPlus (Ahasl1-3/Ahasl1-3) genotypes and materials containing a combination of both tolerant alleles (Imisun/CLPlus heterozygous stack, Ahasl1-1/Ahasl1-3) showed the highest values of GR50, 300 times higher than the susceptible genotypes and more than 2.5 times higher than homozygous Imisun materials (Ahasl1-1/Ahasl1-1). In vitro AHAS enzyme activity assays using increasing doses of herbicide (from 0 to 100 μM) showed similar trends, where homozygous CLPlus materials and those containing heterozygous stacks of Imisun/CLPlus were statistically similar and showed the least level of inhibition of enzyme activity to increasing doses of herbicide. The degree of dominance for the accumulation of biomass after herbicide application calculated for the Ahasl1-1 allele indicated that it is co-dominant to recessive depending on the imazapyr dose used. By the contrary, the Ahasl1-3 allele showed dominance to semi dominance according to the applied dose. This last allele is dominant over Ahasl1-1 over the entire range of herbicide rates tested. At the level of enzymatic activity, however, both alleles showed recessivity to semi-recessivity with respect to the wild-type allele, even though the Ahasl1-3 allele is dominant over Ahasl1-1 at all the herbicides rates used.  相似文献   

17.
The isolation and characterization of mutant alleles in a regulatory gene affecting NADP+-dependent enzymes are described. The locus,mex, is at position 26.5 ± 0.74 on the X chromosome ofDrosophila melanogaster. The newly isolated mutant allele,mex 1, is recessive to either themex allele found in Oregon-R wild-type individuals or that found in thecm v parental stock in which the new mutants were induced. Themex 1 mutant allele is associated with statistically significant decreases in malic enzyme (ME) specific activity and ME specific immunologically cross-reacting material (ME-CRM) in newly emerged adult males. During this same developmental stage in males, the NADP+-dependent isocitrate dehydrogenase specific activity increases to statistically significant levels. Females of themex 1 mutant strain show statistically significant elevated levels of the pentose phosphate shunt enzymes, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Isoelectric focusing and thermolability comparisons of the active ME from mutant and control organisms indicate that the enzyme is the same. Developmental profiles ofmex 1 and control strains indicate that this mutant allele differentially modulates the levels of ME enzymatic activity and ME-CRM during development. This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to M.M.B.  相似文献   

18.
A potential regulatory role for the cyclic nucleotides during liver morphogenesis will be better understood as the development of various components of the cyclic nucleotide system are characterized. Accordingly, adenylate cyclase response to glucagon and 5′-guanylimidodiphosphate (Gpp(NH)p) and the specific activities, cellular distributions, and kinetic constants (V and Km) of the cyclic AMP and cyclic GMP phosphodiesterases were determined at variuos stages of rat liver development. These results show (1) a period of increasing sensitivity of rat liver adenylate cyclase to glucagon at a time when sensitivity to NaF and Gpp(NH)p remains unchanged, and (2) increased responsiveness to glucagon plus Gpp(NH)p which is dependent upon the degree of glucagon sensitivity. It is concluded that the guanul nucleotide regulatory site is a functional part of adenylate cyclase very early in liver development and that the development of glucagon sensitivity is more probably limited by the developmet of glucagon receptors. Two forms of each phosphodiesterase (high and low Km) were found throughout, except that low Km cyclic GMP phosphodiesterase could not be demonstrated in the embryo. No significant change with age was found for the Km or V of any of the enzyme forms. The ratio of soluble: particulate cyclic AMP phosphodiesterase decreased with age, whereas no change in the ration for cyclic GMP phosphodiesterase was observed. Specific activities of each enzyme from were highest in the perinatal period and decreased with age. The changes in phosphodiesterase specific activities paralled changes in guanylate and adenylate cyclase activities, which argues against a selective regulatory role for phosphodiesterase in modulating cyclic nucleotide influences during liver morphogenesis.  相似文献   

19.
Tyrosyl DNA phosphodiesterase (TDP1) is a DNA 3'-end processing enzyme that preferentially hydrolyses the bond between the 3'-end of DNA and stalled DNA topoisomerase 1. The importance of TDP1 is highlighted by its association with the human genetic disease spinocerebellar ataxia with axonal neuropathy (SCAN1). TDP1 comprises of a highly conserved C-terminus phosphodiesterase domain and a less conserved N-terminus tail. The importance of the N-terminus domain was suggested by its interaction with Lig3α. Here we show that this interaction is promoted by serine 81 that is located within a putative S/TQ site in the N-terminus domain of TDP1. Although mutation of serine 81 to alanine had no impact on TDP1 activity in vitro and had little impact on the ability of TDP1 to mediate the rapid repair of CPT- or IR-induced DNA breaks in vivo, it led to marked reduction of protein stability. Moreover, it reduced the ability of TDP1 to promote cell survival following genotoxic stress. Together, our findings identify a novel mechanism for regulating TDP1 function in mammalian cells that is not directly related to its enzymatic activity.  相似文献   

20.
Summary Upon starvation, amoebae of the mutant strain HPX235 are unable to aggregate. Previous work has shown that this aggregateless character was associated with a nearly complete block in the production of the phosphodiesterase by these cells. Aggregation of the HPX235 amoebae can be induced with exogenous phosphodiesterase. In the present work, we show that both the aggregateless character and the block in phosphodiesterase production appear to result from the same recessive mutation, allocated to I.g.IV. Two other mutant strains displaying a comparable phenotype (HPX262 and HP594) were shown by complementation to belong to the same locus pdsA. Unlike wild type cells, the mutants of the locus pdsA cannot be induced to produce phosphodiesterase following treatment of the cells with exogenous cAMP, whether exogenous phosphodiesterase is present or not in the starvation buffer. It is concluded that pdsA is either the structural gene for the phosphodiesterase or a controlling element whose integrity is required for phosphodiesterase production. Mutations in pdsA share secondary effects among which the abnormally low production of the phosphodiesterase inhibitor. However, this effect can be overcome upon addition of exogenous phosphodiesterase, and most likely results from the lack of cAMP hydrolysis.The late development is also affected in pdsA mutants. Aggregates formed in the presence of exogenous phosphodiesterase cannot culminate normally. This suggests that the level of cAMP hydrolysis also plays a role during the late stages of development of Dictyostelium discoideum.Abbreviations used cAMP adenosine 3,5-cyclic monophosphoric acid - l.g. linkage group - PDE 3,5-cAMP phosphodiesterase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号