首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Many articulated brachiopods experience marked life habit variations during ontogeny because they experience their fluid environment at successively higher Reynolds numbers, and they can change the configuration of their inhalant and exhalant flows as body size increases. We show that the extant brachiopod Terebratalia transversa undergoes a substantial ontogenetic change in reorientation governed by rotation around the pedicle. T. transversa′s reorientation angle (maximum ability to rotate on the pedicle) decreases during ontogeny, from 180 degrees in juveniles to 10–20 degrees in individuals exceeding 5 mm, to complete cessation of rotation in individuals larger than 10 mm. Rotation ability is substantially reduced after T. transversa achieves the adult lophophore configuration and preferred orientation with respect to ambient water currents at a length of 2.5–5 mm. We hypothesize that the rotation angle of T. transversa is determined mainly by the position of ventral and dorsal points of attachment of dorsal pedicle muscles relative to the pedicle. T. transversa shows a close correlation between the ontogenetic change in reorientation angle and ontogeny of morphological traits that are related to points of attachment of dorsal pedicle muscles, although other morphological features can also limit rotation in the adult stage. The major morphological change in cardinalia shape and the observed reduction of rotation affect individuals 2.5–10 mm in length. The position of ventral insertions of dorsal pedicle muscles remains constant, but contraction of dorsal pedicle muscles is functionally handicapped because dorsal insertions shift away from the valve midline, rise above the dorsal valve floor, and become limited by a wide cardinal process early in ontogeny (<5 mm). The rate of increase of cardinal process width and of distance between dorsal pedicle muscle scars substantially decreases in the subadult stage (5–10 mm), and most of the cardinalia shell traits grow nearly isometrically in the adult stage (>10 mm). T. transversa attains smaller shell length in crevices than on exposed substrates. The proportion of small‐sized individuals and population density is lower on exposed substrates than in crevices, indicating higher juvenile mortality on substrates prone to grazing and physical disturbance. The loss of reorientation ability can be a consequence of morphological changes that strengthen substrate attachment and maximize protection against biotic or physical disturbance (1) by minimizing torques around the pedicle axis and/or (2) by shifting energy investments into attachment strength at the expense of the cost involved in reorientation.  相似文献   

2.
Respiration and the function of brachiopod punctae   总被引:1,自引:0,他引:1  
When tied shut, three genera of punctate terebratulids from the Northeast Pacific [Terebratulina unguicula (Terebratulidina), Terebratalia transversa and Laqueus californianus (Terebratellidina)] take up O2 from the external water (at one-third the rate when gaping). The impunctate rhynchonellid Hemithiris psittacea does not, indicating that punctae admit O2 when the valves are closed. The shells of T. transversa vary from smooth and globose to Spirife r-like alate and costate morphs. The latter have more punctae and greater uptake of O2 through the shell. The alate/costate morphs are most abundant where turbidity is likely to prompt closure. Punctael respiration is faster through the thin shells of Laqueus than the thick ones of Terebratalia. O2deprived articulates gape widely and close slowly when disturbed, but there is no evidence of O2debt. They regulate O2consumption at the same rate from saturation to 0.5 ml·l1, and thus appear adapted to low O2levels. These results have implications for the energetic efficience of articulates and the evolutionary patterns of bivalve molluscs v. articulates.  相似文献   

3.
Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.  相似文献   

4.
Summary The development of the pedicle in the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The posterior half of the free-swimming larva comprises a non-ciliated pedicle lobe that contains the primordium of the juvenile pedicle at its distal end. During settlement at five to six days post-fertilization, the pedicle lobe secretes a sticky sheet that attaches the larva to the substratum. As metamorphosis proceeds, the epithelium in the posterior half of the pedicle lobe produces a thin overlying cuticle, and the pedicle primordium develops into a stalk-like anchoring organ. The juvenile pedicle protrudes through the gape that occurs between the posterior margins of the shell valves. A cup-like canopy, called the pedicle capsule, lines the posterior end of the shell and surrounds the newly formed pedicle. The core of the juvenile pedicle is filled with a solid mass of connective tissue. Numerous tonofibrils occur in the pedicle epithelium, and the overlying cuticle consists of amorphous material covered by a thin granular fringe. By one year post-metamorphosis, a body cavity develops anterior to the pedicle. Two pairs of adjustor muscles extend from the posterior end of the shell and traverse the cavity to insert in the pedicle. The connective tissue core of the pedicle in sub-adult specimens lacks muscle cells but contains numerous fibroblasts and collagen fibers. Three regions are recognizable in the connective tissue compartment of the adult pedicle: a subepithelial layer of non-fibrous connective tissue, a central fibrous zone, and a proximal mass of tissue that resembles cartilage.List of abbreviations as adhesive sheet - bc body cavity - bv brachial valve of shell - cf collagen fibrils - ct connective tissue - cu cuticle - di diductor muscle - ec epithelial cell - f fibroblast - fz fibrous zone - g gut - gc granular cell - gd gastric diverticulum - ht hinge tooth - ia interarea of pedicle valve - icl inner cuticular layer - lo lophophore - lu lumen of gut - m mesenchyme - ma mantle - ml mantle lobe - ocl outer cuticular layer - p periostracum - pc pedicle capsule - pce pedicle capsule epithelium - pcl pedicle collar of shell - pcn pedicle connectives - pd pedicle - pe pedicle epithelium - pl pedicle lobe - pv pedicle valve of shell - pzc proximal zone of cartilage-like tissue - s substratum - sel subepithelial layer - t tendon - tf tonofibril - vam ventral adjustor muscle  相似文献   

5.
The reorientation of the muscle processes of the ectodermal epithelial cells in Hydra attenuata has been examined during bud morphogenesis and in grafts inserted at right angles to their original orientation. The muscle processes were observed in histological preparations after staining with Mallory's Triple Stain and, in freshly fixed hydra, with polarization microscopy. Since the bud forms as an outpocketing from the parent, the ectodermal muscle processes, which run longitudinally, must reorient at some stage in order to be in the proper orientation on the bud. During the early stages of bud development, the reorientation of the ectodermal muscle processes is a passive result of the deformation of the parental tissue. Later, active reorientation occurs. The means by which muscle processes are able to reorient was studied further in rectangular grafts placed at right angles to their original orientation. In these grafts, muscle processes become aligned with those of the host in two ways: (1) in groups through the rotation of the whole graft or (2) individually, probably by retracting and then reextending in the new direction.  相似文献   

6.
The stratiform laminae of Micrina sclerites originally consisted of rheomorphic successions of monolayers of micrometric–sized, apatitic tablets, presumably interleaved with chitin and glycosaminoglycans (GAGs). Paired laminae enclose slot–like chambers swelling into lobes distally that originally contained GAGs and deposits of spherulitic and prismatic apatite. The laminae are pervaded by apatitic tubes, apparently secreted by microvillous setoblasts and containing, at the surface, chitinous setae. Internal markings suggest that the triangular (sellate) sclerite supported a pair of muscles and the planospiral (mitral) sclerite, a medial muscle and gonadal sacs flanked by a pair of crescentic muscle bases. Both sclerites were secreted by a mantle with a circumferential fold. The sellate and mitral sclerites are homologized with the anterior and posterior shells of Halkieria and could have become the dorsal and ventral valves of the ancestral brachiopod by a sequence of transformations. These include: the folding of the halkieriid body axis; accelerated mixoperipheral growth of the anterior (dorsal) shell to enclose, with the posterior (ventral) shell, a mantle cavity lined with modified ciliated epithelium of the foot; reduction of sclerite–secreting epithelium to the locus of the brachiopod pedicle epithelium; and the anterior (dorsal) spread of gonadal lamellae.  相似文献   

7.
Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl- currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K(+)-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 +/- 151 to 938 +/- 64 microS/cm2, P < 0.01) but not with changes in potassium conductance (405 +/- 20 to 455 +/- 30 microS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl- or by blocking the major muscle Cl- channel, ClC-1, with 30 microM 9-AC. It is concluded that recovery of excitability in K(+)-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl- currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl- channels is important for maintenance of excitability in working muscle.  相似文献   

8.
The structure and fate of transitory larval organs (velum, shell, operculum, retractor muscles, part of the epidermis) of Phestilla sibogae Bergh were studied before, during, and after metamorphosis with both light and electron microscopy to elucidate the morphology of these organs and the mechanisms by which they are lost.Loss of the velar lobes is the first morphological sign of metamorphosis, and involves selective dissociation and subsequent ingestion of the ciliated velar cells; the remaining aggregate of supportive cells is apparently incorporated into cephalic epidermis. Attachment of the larval body to shell and operculum is primarily at sites of retractor muscle insertions; once the velum is gone, the attachment between shell and larval body is lost and the shell is cast off as the visceral organs exit through the shell aperture. Merger of visceral and cephalopedal elements results in flattening of the postlarval body and reorientation of internal organs. Simultaneously, a rapid spreading of epipodial epidermis over the lateral, dorsal, and posterior sides of the body produces the definitive integument. The squamous cells which comprise the larval perivisceral epidermis are pushed ahead of the definitive epidermis and are seen shortly after the shell is cast as a constricted aggregate of cells on the posterior end of the body. Autolysis of the left and right retractor muscles begins during metamorphosis and no trace of them is left after 24 to 48 h. The metapodial mucous glands which hypertrophy before metamorphosis are also lost within 48 h following exit of the post larva from the shell. Metamorphosis produces a detorsion caused in part by muscular action and in part by continuing growth and development.  相似文献   

9.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The long head of the triceps brachii as a free functioning muscle transfer   总被引:2,自引:0,他引:2  
This anatomic study investigates the possibility of using the long head of the triceps brachii muscle as a free functioning muscle transfer for the upper limb. It has been reported that the long head is not difficult to harvest and that its loss does not create significant donor-site morbidity. The muscle was studied in 23 fresh frozen upper limbs. The long head in all 23 specimens had a constant and proximal vascular pedicle from the profunda brachii artery and vein. The mean pedicle was long (4 cm) and had large-caliber vessels (diameter, 3-mm artery and 4-mm vein). Angiograms were carried out in five specimens and dye perfusion studies in six specimens. A single branch from the radial nerve of at least 7 cm in length innervated the muscle. Muscle architecture was studied in 12 specimens and revealed that the long head of the triceps is better suited for forearm reconstruction than either the gracilis or the latissimus dorsi muscles. The mean physiologic cross-sectional area (8.36 cm(2)) and fiber length (10.8 cm on the superficial surface and 8.2 cm on the deep surface) of the long head match more closely those of the flexor digitorum profundus and the extensor digitorum communis, the muscles most commonly replaced.  相似文献   

11.
Hunting spiders are well adapted to fast locomotion. Space saving hydraulic leg extension enables leg segments, which consist almost soley of flexor muscles. As a result, the muscle cross sectional area is high despite slender legs. Considering these morphological features in context with the spider’s segmented C-shaped legs, these specifics might influence the spider’s muscle properties. Moreover, these properties have to be known for modeling of spider locomotion. Cupiennius salei (n = 5) were fixed in a metal frame allowing exclusive flexion of the tibia–metatarsus joint of the second leg (counted from anterior). Its flexing muscles were stimulated supramaximally using needle electrodes. Accounting for the joint geometry, the force–length and the force–velocity relationships were determined. The spider muscles produce 0.07 N cm maximum isometric moment (corresponding to 25 N/cm2 maximum stress) at 160° tibia–metatarsus joint angle. When overextended to the dorsal limit at approximately 200°, the maximum isometric moments decrease to 72%, and, when flexed to the ventral hinge stop at 85°, they drop to 11%. The force–velocity relation shows the typical hyperbolic shape. The mean maximum shortening velocity is 5.7 optimum muscle lengths per second and the mean curvature (a/F iso) of the Hill-function is 0.34. The spider muscle’s properties which were determined are similar to those of other species acting as motors during locomotion (working range, curvature of Hill hyperbola, peak power at the preferred speeds), but they are relatively slow. In conjunction with the low mechanical advantage (muscle lever/load arm), the arrangement of three considerably actuated joints in series may nonetheless enable high locomotion velocities.  相似文献   

12.
The Early Cambrian brachiopod, Eoobolus, is one of the first representatives of the superfamily, Linguloidea, the defining characteristics of which include the classical morphology of oval shells and a pedicle that emerges from between the two valves. The material described here from the Mural Formation (Jasper National Park, Canadian Rocky Mountains) provides well-preserved muscle scars and larval shells that allow a discussion of the muscle system and the larval morphology of Eoobolus. The dorsal larval shell exhibits a morphology similar to other Cambrian linguloids, but also to paterinids, Mickwitzia muralensis, and some rhynchonelliforms. This suggests that there was a lesser degree of disparity among brachiopod larvae in the Cambrian than there is today. The muscle system of Eoobolus is similar to other linguloids, but differs from that of Recent lingulids and discinids by having one or two more pairs of oblique muscles. New data on the distribution of features characteristic of the family Eoobolidae question the validity of this family.  相似文献   

13.
This paper analyses the inter-experimental similarities in the muscle activation during vowel sound production by an individual. Surface electromyography has been used as an indicator of muscle activity and independent component analysis has been used to separate the electrical activity from different muscles. The results indicate that there is a ‘reasonable’ relationship between muscle activities of the corresponding muscles when the experiments are repeated. The results demonstrate that when people speak, they use a similar set of muscles when they repeat the same sound. The results also indicate that there is a variation when the same sound is spoken at different speeds of utterances. This can be attributable to the lack of audio feedback when the same sound is uttered.  相似文献   

14.
Modelling flow patterns in conical dendroid graptolites   总被引:1,自引:0,他引:1  
Life-sized wire models of several different morphologies of conical dendroid graptolites were tested in a flume to observe the flow patterns within the rhabdosome. Testing over a range of unidirectional current speeds from 3 to 15 cm/s showed that upward-directed currents are produced within the cone, and a significant amount of the water that enters the cone through the upstream wall exits the top opening. These upward currents were most evident at speeds of 3–10 cm/s. Shorter cones, wide cones, less porous mesh, and downstream tilting each increased the amount of water exiting the top of the cone, especially at higher speeds. These findings are consistent with a mode of feeding in which conical forms received afferent currents into the sides of the cones, where food particles were captured, and waste efferent currents went out the top opening. This does not support the hypothesis that downward-directed, ciliary feeding currents produced the force necessary to propel the earliest planktic graptolites into the water column in the evolutionary transition from a benthic to a planktic mode of life. The suggestion that differing rhabdosomal morphologies may represent adaptations to differing paleocurrent regimes is supported. Dendroid rhabdosomal morphology may prove to be a useful paleoenvironmental tool, particularly as an indicator of current strengths, especially in fine-grained sediments where other current-indicative structures may be lacking. Graptolite, dendroid, flow, feeding, paleoecology.  相似文献   

15.
Despite limited data on humans, previous studies suggest that there is an association between the duration of daily muscle activity and the proportion of type I muscle fibers. We quantified the activity of limb muscles in healthy men and women during normal use and compared these measurements with published reports on fiber-type proportions. Seven men (age range = 21-28 yr) and seven women (age range = 18-26 yr) participated in two 10-h recording sessions. Electromyogram (EMG) activity of four muscles in nondominant upper (first dorsal interosseus and biceps brachii) and lower limbs (vastus medialis and vastus lateralis) was recorded with surface electrodes. Hand and arm muscles were active for 18% of the recording time, whereas leg muscles were active for only 10% of the recording time. On average, upper-limb muscles were activated 67% more often than lower-limb muscles. When lower-limb muscles were activated, however, the mean amplitude of each burst was greater in leg muscles [18 and 17% maximum voluntary contraction (MVC)] compared with hand (8% MVC) and arm (6% MVC) muscles. Temporal association in activity between pairs of muscles was high for the two lower-limb muscles (r2 = 0.7) and relatively weak for the two upper-limb muscles (r2 = 0.09). Long-term muscle activity was only different between men and women for the biceps brachii muscle. We found no relation between duration of muscle activity in 10-h recordings and the reported values of type I fibers in men and women.  相似文献   

16.
本文考察3—4岁儿童在圆形空间中重新定位和找回玩具的能力。让儿童把玩具放到一个路标物体里。闭眼转圈后找回玩具,观察儿童寻找玩具的位置,并将它跟睁眼转圈后儿童寻找玩具的位置比较,从而考察儿童的认路能力。实验结果说明儿童不能利用路标物体所形成的几何结构和具有延展性信息的表面来认路,但可以根据环境中的可靠信息来认路,即路标物体的独特性信息。因此,我们认为儿童是根据环境中的可靠信息——路标物体的独特性来认路的。  相似文献   

17.
The superficial (SDF) and deep digital flexor (DDF) muscles are critical for equine forelimb locomotion. Knowledge of their mechanical properties will enhance our understanding of limb biomechanics. Muscle contractile properties derived from architectural-based algorithms may overestimate real forces and underestimate shortening capacity because of simplistic assumptions regarding muscle architecture. Therefore, passive and active (=total - passive) force-length properties of the SDF and DDF muscles were measured directly in vivo. Muscles from the right forelimbs of four Thoroughbred horses were evaluated during general anesthesia. Limbs were fixed to an external frame with the muscle attached to a linear actuator and load cell. Each muscle was stretched from an unloaded state to a range of prefixed lengths, then stimulated while held at that length. The total force did not exceed 4000 N, the limit for the clamping device. The SDF and DDF muscles produced 716+/-192 and 1577+/-203 N maximum active isometric force (F(max)), had ascending force-length ranges (R(asc)) of 5.1+/-0.2 and 9.1+/-0.4 cm, and had passive stiffnesses of 1186+/-104 and 1132+/-51 N/cm, respectively. The values measured for F(max) were much smaller than predicted based on conservative estimates of muscle specific tension and muscle physiological cross-sectional area. R(asc) were much larger than predicted based on muscle fiber length estimates. These data suggest that accurate prediction of the active mechanical behavior of architecturally complex muscles such as the equine DDF and SDF requires more sophisticated algorithms.  相似文献   

18.
Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.  相似文献   

19.
Investigations of trunk muscle activation during gait are rare in the literature. As yet, the small body of literature on trunk muscle activation during gait does not include any systematic study on the influence of walking speed. Therefore, the aim of this study was to analyze trunk muscle activation patterns at different walking speeds. Fifteen healthy men were investigated during walking on a treadmill at speeds of 2, 3, 4, 5 and 6 km/h. Five trunk muscles were investigated using surface EMG (SEMG). Data were time normalized according to stride time and grand averaged SEMG curves were calculated. From these data stride characteristics were extracted: mean SEMG amplitude, minimum SEMG level and the variation coefficient (VC) over the stride period. With increasing walking speed, muscle activation patterns remained similar in terms of phase dependent activation during stride, but mean amplitudes increased generally. Phasic activation, indicated by VC, increased also, but remained almost unchanged for the back muscles (lumbar multifidus and erector spinae) between 4 and 6 km/h. During stride, minimum amplitude reached a minimum at 4 km/h for the back muscles, but for internal oblique muscle it decreased continuously from 2 to 6 km/h. Cumulative sidewise activation of all investigated muscles reached maximum amplitudes during the contralateral heel strike and propulsion phases. The observed changes argue for a speed dependent modulation of activation of trunk muscles within the investigated range of walking speeds prior to strictly maintaining certain activation characteristics for all walking speeds.  相似文献   

20.
The present study was conducted in order to establish a methodology based on the finite element method to simulate the contraction of the pelvic floor (PF) muscles. In the generated finite element model, a downward pressure of 90 cm H2O was applied, while actively contracting the PF muscles with different degrees of muscular activation (10, 50 and 100%). The finite element methodology of the active contraction behaviour proposed in this study is adequate to simulate PF muscle contraction with different degrees of muscular activation. In this case, in particular, for an activation of 100%, the numerical model was able to displace the pubovisceral muscle in a range of values very similar to the displacement found in the magnetic resonance imaging data. In the analysed case study, it would be possible to conclude that an intensity contraction of 50% would be necessary to produce enough stiffness to avoid possible urine loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号