首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Single-channel conductance data on four different gramicidin channel lengths demonstrate that conductance magnitude is neither inversely dependent on the square of the channel length nor on the image force arising from differences in the extent of lipid dimpling (Jordan and Vayl (1985) Biochim. Biophys. Acta 818, 416-420). Rather the conductance differences are consistent with the decreased off-rate constant for the singly occupied state as the ionic radius decreases from that of cesium ion to sodium ion coupled with the decreased probability of the doubly occupied channel due to increased ion-ion repulsion as the channel is shortened (Urry et al. (1984) Biochim. Biophys. Acta 774, 115-119).  相似文献   

4.
Proton transport on water wires, of interest for many problems in membrane biology, is analyzed in side-chain analogs of gramicidin A channels. In symmetrical 0.1 N HCl solutions, fluorination of channel Trp(11), Trp-(13), or Trp(15) side chains is found to inhibit proton transport, and replacement of one or more Trps with Phe enhances proton transport, the opposite of the effects on K(+) transport in lecithin bilayers. The current-voltage relations are superlinear, indicating that some membrane field-dependent process is rate limiting. The interfacial dipole effects are usually assumed to affect the rate of cation translocation across the channel. For proton conductance, however, water reorientation after proton translocation is anticipated to be rate limiting. We propose that the findings reported here are most readily interpreted as the result of dipole-dipole interactions between channel waters and polar side chains or lipid headgroups. In particular, if reorientation of the water column begins with the water nearest the channel exit, this hypothesis explains the negative impact of fluorination and the positive impact of headgroup dipole on proton conductance.  相似文献   

5.
To explore the possible role of Trp side chains in gramicidin channel conductance dispersity, we studied the dispersity of gramicidin M (gM), a gramicidin variant in which all four tryptophan residues are replaced with phenylalanine residues, and its enantiomer, gramicidin M(-) (gM(-)), and compared them to that of gramicidin A (gA). The conductances of highly purified gM and gM(-) were studied in alkali metal solutions at a variety of concentrations and voltages, in seven different types of lipid, and in the presence of detergent. Like gA channels, the most common gM channel conductance forms a narrow band. However, unlike gA channels, where the remaining 5-30% of channel conductances are broadly distributed below (and slightly above) the main band, in gM there is a narrow secondary band with <50% of the main peak conductance. This secondary peak was prominent in NaCl and KCl, but significantly diminished in CsCl and RbCl. Under some conditions, minor components can be observed with conductances yet lower than the secondary peak. Interconversions between the primary conductance state and these yet lower conductance states were observed. The current-voltage relations for both primary and secondary gM channel types have about the same curvature. The mean lifetime of the secondary channel type is below one third that of the primary type. The variants represent state deviations in the peptide or adjacent lipid structure.  相似文献   

6.
The complete amino acid sequence of bothropstoxin-I (BthTX-I), a myotoxin isolated fromBothrops jararacussu snake venom, is reported. The results show that BthTX-I is a Lys49 phospholipase A2 (PLA2)-like protein composed of a single polypeptide chain of 121 amino acid residues (M r=13,720), containing one methionine and 14 half-cystines. Although deprived of any detectable PLA2 activity, BthTX-I reveals a high degree of sequence homology with Asp49-PLA2s and with other Lys49-myotoxins. Critical mutations—such as Leu5 for Phe5; Gln11 for X11; Asn28 for Tyr28; Leu32 for Gly32; Lys49 for Asp49; and Asp71 for Asn71—which are apparently involved with the decreasing or elimination of PLA2 activity, have been detected. The same mutations occurred in myotoxin II fromBothrops asper venom, but five extra changes—namely, Pro90 for Ser90; Gly111 for Asn111; His120 for Tyr120; Phe124 for Leu124; and Pro132 for Ala132—have been found relative to myotoxin II.  相似文献   

7.
To determine whether amino acid side-chain substitutions in linear gramicidins after the structure of membrane-spanning channels formed by the modified peptides, we have developed a quantitative measure of structural equivalence of the peptide backbone among gramicidin channels based on functional (single-channel) measurements. The experiments exploit the fact that gramicidin channels are symmetrical dimers, and that channels formed by different gramicidin analogues can be distinguished on the basis of their single-channel current amplitudes or durations. It is thereby possible to determine whether hybrid channels can form between chemically dissimilar peptides, i.e. whether the peptides can adapt to each other. Further, since the relative rates of channel formation as well as the relative concentrations of pure and hybrid channel types can be measured in the same membrane, these experiments provide a quantitative measure of the energetic cost of hybrid channel formation relative to the formation of the pure channels. For a wide variety of different side-chains, we find that substitutions as extreme as glycine to phenylalanine at position 1, at the join between the two monomers in a membrane-spanning dimer, incur no energetic cost for channel formation, which implies that channels formed by each of the modified peptides are structurally equivalent. In addition, the average durations of the hybrid channels (except those having tyrosine or hexafluorovaline at position 1) are intermediate to the average durations of the respective pure channel types, thus providing further evidence for structural equivalence among channels formed by sequence-substituted gramicidins.  相似文献   

8.
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry.  相似文献   

9.
Measurements have been made of gramicidin single-channel lifetimes in monoacylglycerol bilayers chosen so that their thickness ranged from above to below the length of the gramicidin channel. Contact angles, electrical capacities and bulk-phase interfacial tensions have also been determined for these systems. The mean channel lifetime decreased with the hydrocarbon thickness of the membrane until the latter reached 2.2 nm, after which the lifetime was relatively constant. A theoretical model has been proposed which relates the mean channel lifetime (or dissociation constant) to both the thickness and the tension of the bilayers. The analysis of the present results and of those of previous studies has led to the idea that aggregates of water molecules may play an important r?le in the dissociation of the gramicidin channel.  相似文献   

10.
To examine the structural and functional importance of backbone amide groups in ion channels for subunit folding, hydrogen bonding, ion solvation, and ion permeation, we replaced the peptide bond between Val(1) and Gly(2) in gramicidin A by an ester bond. The substitution is at the junction between the two channel subunits, where it removes an intramolecular hydrogen bond between the NH of Gly(2) and the C==O of Val(7) and perturbs an intermolecular hydrogen bond between the C==O of Val(1) in one subunit and the NH of Ala(5) in the other subunit. The substitution thus perturbs not only subunit folding but also dimer assembly, in addition to any effects on ion permeation. This backbone modification has large effects on channel function: It alters channel stability, as monitored by the channel forming ability and channel lifetime, and ion permeability, as monitored by changes in single-channel conductance and cation permeability ratios. In fact, the homodimeric channels, with two ester-containing subunits, have lifetimes so short that it becomes impossible to characterize them in any detail. The peptide --> ester substitution, however, does not affect the basic subunit fold because heterodimeric channels can form between a subunit with an ester bond and a native subunit. These heterodimeric channels, with only a single ester bond, are more easily characterized; the lone ester reduces the single-channel conductance about 4-fold and the lifetime about 200-fold as compared to the native homodimeric channels. The altered channel function results from a perturbation/disruption of the hydrogen bond network that stabilizes the backbone, as well as the membrane-spanning dimer, and that forms the lining of the ion-conducting pore. Molecular dynamics simulations show the expected destabilization of the modified heterodimeric or homodimeric channels, but the changes in backbone structure and dynamics are remarkably small. The ester bond is somewhat unstable, which precluded further structural characterization. The lability also led to a hydrolysis product that terminates with an alcohol and lacks formyl-Val. Symmetric channels formed by the hydrolyzed product again have short lifetimes, but the channels are distinctly different from those formed by the ester gramicidin A. Furthermore, well-behaved asymmetric channels form between the hydrolysis product and reference subunits that have either an L- or a D-residue at the formyl-NH-terminus.  相似文献   

11.
To examine the effect of amino acid substitutions in lysozyme on the binding of antibodies to lysozyme, we purified lysozyme from the egg whites of California quail and Gambel quail. Tryptic peptides were isolated from digests of the reduced and carboxymethylated lysozymes and subjected to quantitative analysis of their amino acid compositions. The two proteins were identical by this criterion. Each peptide from the California quail lysozyme was then sequenced by quantitative Edman degradation, and the peptides were ordered by homology with other bird lysozymes. California quail lysozyme is most similar in amino acid sequence to bobwhite quail lysozyme, from which it differs by two substitutions: arginine for lysine at position 68 and histidine for glutamine at position 121. California and bobwhite quail lysozymes were antigenically distinct from each other in quantitative microcomplement fixation tests, indicating that substitutions at one or both of these positions can alter the antigenic structure of lysozyme. Yet neither of these positions is among those claimed to account for the precise and entire antigenic structure of lysozyme [Atassi, M. Z., & Lee, C.-L. (1978) Biochem. J. 171, 429--434]. Two possible explanations for this discrepancy are discussed.  相似文献   

12.
Jordan JB  Shobana S  Andersen OS  Hinton JF 《Biochemistry》2006,45(47):14012-14020
Tryptophan residues often are found at the lipid-aqueous interface region of membrane-spanning proteins, including ion channels, where they are thought to be important determinants of protein structure and function. To better understand how Trp residues modulate the function of membrane-spanning channels, we have examined the effects of Trp replacements on the structure and function of gramicidin A channels. Analogues of gramicidin A in which the Trp residues at positions 9, 11, 13, and 15 were sequentially replaced with Gly were synthesized, and the three-dimensional structure of each analogue was determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. Though Trp --> Gly substitutions destabilize the beta6.3-helical gA channel structure, it is possible to determine the structure of analogues with Trp --> Gly substitutions at positions 11, 13, and 15, but not for the analogue with the Trp --> Gly substitution at position 9. The Gly11-, Gly13-, and Gly15-gA analogues form channels that adopt a backbone fold identical to that of native gramicidin A, with only small changes in the side chain conformations of the unsubstituted residues. Single-channel current measurements show that the channel function and lifetime of the analogues are significantly affected by the Trp --> Gly replacements. The conductance variations appear to be caused by sequential removal of the Trp dipoles, which alter the ion-dipole interactions that modulate ion movement. The lifetime variations did not appear to follow a clear pattern.  相似文献   

13.
The effects of n-decanol, n-hexadecanol, n-octyl(oxyethylene)3 alcohol and cholesterol on gramicidin single-channel lifetime in planar lipid bilayers have been determined. The bilayers used were formed from a solution of monoolein in squalene. Measurements have also been made of the above compounds' effects on membrane thickness (as measured by electrical capacity and optical reflectance technique) and surface tension (as derived from bulk interfacial tension and bilayer-lens contact angle measurements). The reduction in single-channel lifetime caused by the n-alkanols may be accounted for quantitatively in terms of the effects of these compounds on bilayer thickness and surface tension. The n-octyl(oxyethylene)3 alcohol caused an increase in single-channel lifetime which is also consistent with the thickness/tension theory. The reduction in channel lifetime caused by cholesterol, however, was much larger than would be predicted from its effects on bilayer thickness and surface tension.  相似文献   

14.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

15.
Gramicidin A single-channel current-voltage characteristics were studied at low permeant ion concentrations and very high applied potentials. The purpose of these experiments was to elucidate the basis for the small, but definite, voltage dependence observed under these circumstances. It was found that this residual voltage dependence is a reflection of interfacial polarization effects, similar to those proposed by Walz et al. (Biophys. J. 9:1150-1159). It will be concluded that there exists an effectively voltage-independent step in the association reaction between a gramicidin A channel and the permeating ion. Some consequences of interfacial polarization effects for the analysis of conductance vs. activity relations will be discussed.  相似文献   

16.
Summary Malonyl gramicidin is incorporated into lysolecithin micelles in a manner which satisfies a number of previously demonstrated criteria for the formation of the transmembrane channel structure. By means of sodium-23 nuclear magnetic resonance, two binding sites are observed: a tight site and a weak site with binding constants of approximately 100m –1 and 1m –1, respectively. In addition, off-rate constants from the two sites were estimated from NMR analyses to bek off t 3×105/sec andk off w 2×107/sec giving, with the binding constants, the on-rate constants,k on t 3×107/msec andk on w 2×107/m sec.Five different multiple occupancy models with NMR-restricted energy profiles were considered for the purpose of calculating single-channel currents as a function of voltage and concentration utilizing the four NMR-derived rate constants (and an NMR-limit placed on a fifth rate constant for intrachannel ion translocation) in combination with Eyring rate theory for the introduction of voltage dependence.Using the X-ray diffraction results of Koeppe et al. (1979) for limiting the positions of the tight sites, the two-site model and a three-site model in which the weak sites occur after the tight site is filled were found to satisfactorily calculate the experimental currents (also reported here) and to fit the experimental currents extraordinarily well when the experimentally derived values were allowed to vary to a least squares best fit. Surprisingly the best fit values differed by only about a factor of two from the NMR-derived values, a variation that is well within the estimated experimental error of the rate constants.These results demonstrate the utility of ion nuclear magnetic resonance to determine rate constants relevant to transport through the gramicidin channel and of the Eyring rate theory to introduce voltage dependence.  相似文献   

17.
A recently introduced real-space lattice methodology for solving the three-dimensional Poisson-Nernst-Planck equations is used to compute current-voltage relations for ion permeation through the gramicidin A ion channel embedded in membranes characterized by surface dipoles and/or surface charge. Comparisons to a variety of experimental results, presented herein, have proven largely successful. Strengths and weaknesses of the method are discussed.  相似文献   

18.
The ion permeability of transmembrane channels formed by the linear gramicidins is altered by amino acid sequence substitutions. We have previously shown that the polarity of the side chain at position one is important in modulating a channel's conductance and ion selectivity [Russel et al. (1986) Biophys. J. 49, 673-686]. Changes in polarity could alter ion permeability by (through-space) ion-dipole interactions or by (through-bond) inductive electron shifts. We have addressed this question by investigating the permeability characteristics of channels formed by gramicidins where the NH2-terminal amino acid is either phenylalanine or one of a series of substituted phenylalanines: p-hydroxy-, p-methoxy-, o-fluoro-, m-fluoro-, or p-fluorophenylalanine. The electron-donating or -withdrawing nature, as quantified by the Hammett constant, ranges from -0.37 to +0.34 for these side chains. Channels formed by these gramicidins show a more than 2.5-fold variation in their Na+ conductance, but the conductance variations do not rank in the order of the Hammett constants of the side chains. Inductive effects cannot therefore be of primary importance in the modulation of the gramicidin single-channel conductance by these side chains. The results support previous suggestions that electrostatic interactions between side chain dipoles and permeating ions can modify the energy profile for ion movement through the gramicidin channel and thus alter the conductance.  相似文献   

19.
The results of Decker and Levitt (1987) suggest that the conductance of H+ ion through the gramicidin channel is limited primarily by diffusion in the bulk solution at the channel mouth. It is assumed in this paper that the H+ conductance is 100% diffusion limited. This means that all the factors that influence the H+ flux are external to the channel and are presumed to be known. In particular, the diffusion coefficient of H+ in this region is assumed to be equal to the bulk solution value and the only force acting on the ion is that due to the applied voltage. A model of the H+ flux is derived, based on the Nernst-Planck equation. It has three adjustable parameters: the electrostatic radius, the capture distance, and the radius of the H+ ion. The acceptable range of the parameters was determined by comparing the predictions of the model with the experimental measurements of the H+ conductance at pH 3.75. The best fit was obtained for an electrostatic radius in the range 2.3-2.7 A. This is in good agreement with earlier predictions (2.5 A) based on the assumption that the dielectric constant of the channel water is equal to that of bulk water. The addition of 1 M choline Cl- (an impermeant) increases the H+ current at low voltage and decreases it at high voltage. The increase can be explained by the small surface charge that results from the separation of charge produced by exclusion of the large choline cation (relative to Cl-) from the membrane surface. The decrease at high voltages can be accounted for by the change in the profile of the applied potential produced by the increase in ionic strength.  相似文献   

20.
The mean lifetime of gramicidin A channels in bilayers formed from monoolein and squalane was sharply reduced by the absorption of a range of n-alkanols and cholesterol. Results are shown for n-hexanol, n-octanol, n-decanol, n-dodecanol, n-tetradecanol, n-hexadecanol, n-octadecanol and cholesterol. The longer chain n-alkanols were apparently more effective than the shorter members and cholesterol was the most effective of the substances examined. The single channel conductance was also affected, though to a much lesser extent than the mean channel lifetime, the n-alkanols producing increases and cholesterol a decrease. It is suggested that membrane fluidity changes are not likely to be primarily responsible for the reductions in channel lifetimes but that the bilayer tension, which is known to be increased by n-octanol, could be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号