首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Previous micro-injection studies showed that some recombinant viral movement proteins and plant proteins produced in and purified from Escherichia coli could traffic from cell to cell. However, the relevance of these findings obtained by micro-injecting proteins produced in E. coli to the real functions of these proteins when produced in planta has been questioned. In this study, specific gene constructs were delivered by biolistic bombardment into tobacco (Nicotiana tabacum var Samsun) leaf epidermis for in planta production of the green fluorescent protein (GFP) and various fusions between the cucumber mosaic virus 3a movement protein (3a MP) and GFP. Free GFP remained in cells producing it. In contrast, 3a MP:GFP fusion protein moved from approximately half of the cells producing it into neighboring cells. The movement also occurred at 4°C. A mutant 3a MP:GFP was incapable of cell-to-cell movement in all cases. A 3a MP:GUS fusion protein produced in this manner also moved from cell to cell. Our data provide direct evidence that specific viral proteins produced in planta can be transported between cells. Furthermore, our data suggest that the CMV 3a MP contains a signal for transport. Our approach is simple and efficient and has many potential applications in studying plasmodesma-mediated macromolecular transport.  相似文献   

2.
The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.  相似文献   

3.
Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.  相似文献   

4.
Expansins in growing tomato leaves   总被引:18,自引:0,他引:18  
An expansin-like protein from growing tomato leaves was identified by its ability to restore the 'acid-growth' response to heat-inactivated tomato walls and by its similarity to expansins from cucumber hypocotyls. Native walls from growing tomato leaves exhibit an endogenous acid-induced extension (creep) that resembles in various biochemical characteristics the acid-growth activity of cucumber hypocotyls. For example, the acid-growth activity is lost when the walls of tomato leaves are briefly heated and is largely restored by addition of a crude protein extract from the walls of growing leaves. Wall proteins from growing leaves enhance the stress relaxation spectrum of tomato walls in a fashion characteristic of cucumber expansins. HPLC fractionation of the crude wall protein from tomato leaves yielded an active fraction containing a major 27 kDa protein that cross-reacts with an antibody raised against cucumber expansin. The results show that tomato leafwalls possess at least one expansin that is responsible for the acid-growth property of leaves and indicate that cell wall extension in leaves shares an underlying protein mechanism common to cell wall expansion in stems.  相似文献   

5.
Summary The sink-source transition in tobacco leaves was studied noninvasively using transgenic plants expressing the green-fluorescent protein (GFP) under control of theArabidopsis thaliana SUC2 promoter, and also by imaging transgenic plants that constitutively expressed a tobacco mosaic virus movement protein (MP) fused to GFP (MP-GFP). The sink-source transition was measured on intact leaves and progressed basipetally at rates of up to 600 m/h. The transition was most rapid on the largest sink leaves. However, leaf size was a poor indicator of the current position of the sink-source transition. A quantitative study of plasmodesmatal frequencies revealed the loss of enormous numbers of simple plasmodemata during the sink-source transition. In contrast, branched plasmodesmata increased in frequency during the sink-source transition, particularly between periclinal cell walls of the spongy mesophyll. The progression of plasmodesmal branching, as mapped by the labelling of plasmodesmata with MP-GFP fusion, occurred asynchronously in different cell layers, commencing in trichomes and appearing lastly in periclinal cell walls of the palisade layer. It appears that dividing cells retain simple plasmodesmata for longer periods than nondividing cells. The rapid conversion of simple to branched plasmodesmata is discussed in relation to the capacity for macromolecular trafficking in developing leaf tissues.  相似文献   

6.
Leaves undergo a sink-source transition during which a physiological change occurs from carbon import to export. In sink leaves, biolistic bombardment of plasmids encoding GFP-fusion proteins demonstrated that proteins with an Mr up to 50 kDa could move freely through plasmodesmata. During the sink-source transition, the capacity to traffic proteins decreased substantially and was accompanied by a developmental switch from simple to branched forms of plasmodesmata. Inoculation of sink leaves with a movement protein-defective virus showed that virally expressed GFP, but not viral RNA, was capable of trafficking between sink cells during infection. Contrary to dogma that plasmodesmata have a size exclusion limit below 1 kDa, the data demonstrate that nonspecific "macromolecular trafficking" is a general feature of simple plasmodesmata in sink leaves.  相似文献   

7.
Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H+ symporter gene. Analyses of the AtSUC2 promoter-GFP plants demonstrated that the 27-kD GFP protein can traffic through plasmodesmata from companion cells into sieve elements and migrate within the phloem. With the stream of assimilates, the GFP is partitioned between different sinks, such as petals, root tips, anthers, funiculi, or young rosette leaves. Eventually, the GFP can be unloaded symplastically from the phloem into sink tissues, such as the seed coat, the anther connective tissue, cells of the root tip, and sink leaf mesophyll cells. In all of these tissues, the GFP can traffic cell to cell by symplastic post-phloem transport. The presented data show that plasmodesmata of the sieve element-companion cell complex, as well as plasmodesmata into and within the analyzed sinks, allow trafficking of the 27-kD nonphloem GFP protein. The data also show that the size exclusion limit of plasmodesmata can change during organ development. The results are also discussed in terms of the phloem mobility of assimilates and of small, low molecular weight companion cell proteins.  相似文献   

8.
Intercellular communication delivers critical information for position-dependent specification of cell fate. In plants, a novel mechanism for cell-to-cell communication involves the intercellular trafficking of regulatory proteins and mRNAs. The maize KNOTTED1 (KN1) gene acts non cell-autonomously in the maize leaf, and KN1 was the first plant protein shown to traffic cell-to-cell, presumably through plasmodesmata. We have compared the intercellular trafficking of green fluorescent protein (GFP) fusions of KN1 and Arabidopsis KN1-related homeobox proteins to that of the viral movement protein from turnip vein clearing tobamovirus. We show that there is specific developmental regulation of GFP approximately KN1 trafficking. GFP -- KN1 was able to traffic from the inner layers of the leaf to the epidermis, but not in the opposite direction, from epidermis to mesophyll. However, GFP or the GFP -- movement protein fusion moved readily out of the epidermis. GFP -- KN1 was however able to traffic out of the epidermal (L1) layer in the shoot apical meristem, indicating that KN1 movement out of the L1 was developmentally regulated. GFP -- KNAT1/BREVIPEDICELLUS and GFP -- SHOOTMERISTEMLESS fusions could also traffic from the L1 to the L2/L3 layers of the meristem. In a test for the functional significance of trafficking, we showed that L1-specific expression of KN1 or of KNAT1 was able to partially complement the strong shootmeristemless-11 (stm-11) mutant. However, a cell-autonomous GUS fusion to KN1 showed neither trafficking ability nor complementation of stm-11 when expressed in the L1. These results suggest that the activity of KN1 and related homeobox proteins is maintained following intercellular trafficking, and that trafficking may be required for their normal developmental function.  相似文献   

9.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

10.
Summary. The intercellular communication by plasmodesmata (PD) is important for the growth and development of plants, and the transport of macromolecules through PD is likely to be regulated by developmental signals. While PD in the apical meristem transport macromolecules such as mRNAs, the branched PD in the mature leaf do not transport large macromolecules freely. The changes in PD during development might be important for sink-to-source changes in leaves, but the molecular mechanism is still unknown. Movement proteins (MPs) of the tobacco mosaic virus localize in the branched PD and increase the size exclusion limit, allowing transport of viral RNA. We developed a method for differential extraction of MP from isolated cell walls of transgenic tobacco leaves expressing MP or MP tagged with green-fluorescent protein. Lithium chloride at a concentration of 8 M removed filamentous structures in branched PD, the possible attachment site of MP. As some endogenous proteins were coeluted with MP by the treatment, this extraction method might be a powerful tool for investigating MP-interacting proteins in branched PD. Correspondence and reprints: Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.  相似文献   

11.
The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.  相似文献   

12.
13.
14.
15.
H Nagano  T Okuno  K Mise    I Furusawa 《Journal of virology》1997,71(3):2270-2276
The movement protein (MP) gene of brome mosaic virus (BMV) was precisely replaced with that of cucumber mosaic virus (CMV). Infectivity tests of the chimeric BMV on Chenopodium quinoa, a permissive host for cell-to-cell movement of both BMV and CMV, showed that the chimeric BMV failed to move from cell to cell even though it replicated in protoplasts. A spontaneous mutant of the chimeric BMV that displayed cell-to-cell movement was subsequently obtained from a local lesion during one of the experiments. A cloned cDNA representing the genomic RNA encoding the MP of the chimeric BMV mutant was analyzed and found to contain a mutation in the CMV MP gene resulting in deletion of the C-terminal 33 amino acids of the MP. Directed mutagenesis of the CMV MP gene showed that the C-terminal deletion was responsible for the movement capability of the mutant. When the mutation was introduced into CMV, the CMV mutant moved from cell to cell in C. quinoa, though the movement was less efficient than that of the wild-type CMV. These results indicate that the CMV MP, except the C-terminal 33 amino acids, potentiates cell-to-cell movement of both BMV and CMV in C. quinoa. In addition, since C. quinoa is a common host for both BMV and CMV, these results suggest that the CMV MP has specificity for the viral genomes during cell-to-cell movement of the virus and that the C-terminal 33 amino acids of the CMV MP are involved in that specificity.  相似文献   

16.
A hybrid virus (CMVcymMP) constructed by replacing the movement protein (MP) of cucumber mosaic cucumovirus (CMV) with that of cymbidium ringspot tombusvirus (CymRSV) was viable and could efficiently spread both cell to cell and long distance in host plants. The hybrid virus was able to move cell to cell in the absence of functional CP, whereas CP-deficient CMV was restricted to single inoculated cells. In several Chenopodium and Nicotiana species, the symptom phenotype of the hybrid virus infection was clearly determined by the foreign MP gene. In Nicotiana debneyi and Nicotiana tabacum cv. Xanthi, the hybrid virus could move systemically, contrary to CymRSV.  相似文献   

17.
Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In addition, the mutations were introduced in the MP gene of AMV RNA 3 and the mutant RNAs were used to infect tobacco plants. Ten mutants were affected in one or more of the following functions of MP: the formation of tubular structures on the surface of protoplasts, association with the endoplasmic reticulum (ER) of suspension cells and epidermal cells, targeting to punctate structures in the cell wall of epidermis cells, movement from transfected cells to adjacent cells in epidermis tissue, cell-to-cell movement, or long-distance movement in plants. The mutations point to functional domains of the MP and support the proposed order of events in AMV transport. Studies with several inhibitors indicate that actin or microtubule components of the cytoskeleton are not involved in tubule formation by AMV MP. Evidence was obtained that tubular structures on the surface of transfected protoplasts contain ER- or plasmalemma-derived material.  相似文献   

18.
19.
20.
Callus cultures were induced from leaves of a tomato plant infected with tomato yellow leaf curl virus (TYLCV) and analyzed for viral DNA presence during successive subcultures. No TYLCV DNA was detected in calli sampled after eight months of culture. Considerable differences in the presence of TYLCV DNA were found within sectors of a callus culture and between different callus cultures, throughout the entire eight months period. Infected calli which were cultured at sub-optimal temperature (15°C) retained the viral DNA longer than at 25 °C. The results suggested that TYLCV disappearance during callus culture was due to a disruption of some of the cell-to-cell connections, resulting in islands of infected cells in the midst of uninfected tissue and/or to the competition between the rate of cell division and that of viral DNA replication.Abbreviations BA benzyladenine - CMV cucumber mosaic virus - NAA naphthaleneacetic acid - TMV tobacco mosaic virus - TYLCV tomato yellow leaf curl virus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号