首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Haemolymph lectin and the maturation of trypanosome infections in tsetse   总被引:2,自引:0,他引:2  
The tsetse immune system has recently been shown to be involved in trypanosome maturation; lectin secreted in the midgut, normally responsible for preventing the establishment of midgut infections, induces established midgut trypanosomes to mature. We now show that a second lectin, present in tsetse haemolymph, is essential to complete the maturation process. Interactions between tsetse lectins and parasite surface coats probably determine trypanosome transmissibility and may be partly responsible for the distribution of trypanosomiasis in Africa.  相似文献   

2.
Midgut lectin activity and sugar specificity in teneral and fed tsetse   总被引:2,自引:0,他引:2  
Abstract. . Midgut infection rates of Trypanosoma congolense in Glossina palpalis palpalis and of Trypanosoma brucei rhodesiense in Glossina pallidipes are potentiated by the addition of D+ glucosamine to the infective feed, but not to the levels of super-infection reported for G. m. morsitans. G. p. palpalis and G.pallidipes are shown to possess two trypanocidal molecules: a glucosyl lectin which can be inhibited by D+ glucosamine and a galactosyl molecule inhibited by D+ galactose. Addition of both D+ glucosamine and D+ galactose to the teneral infective feed promotes super-infection of the midguts of G.p.palpalis. The glucosyl lectin is specific for rabbit erythrocytes and is present in guts of fed G.m.morsitans and G.p.palpalis , titres of lectin activity do not increase substantially after the second bloodmeal. The galactosyl specific molecule does not show any erythrocyte specificity, although haemolytic activity is observed only in G.p.palpalis and not in G.m.morsitans. The presence of two trypanocidal molecules in some species of tsetse may account for the innate refractoriness of these flies to trypanosome infection.
As D+ glucosamine also inhibits the killing of procyclic trypanosomes taken as an infective feed, it is suggested that the midgut lectin is normally responsible for the agglutination of trypanosomes in the fly midgut by binding to the pro-cyclic surface coat, prior to establishment in the ecto-peritrophic space.  相似文献   

3.
Cyclical transmission of African trypanosomes - Trypanosoma congolense and subspecies of T. brucei - depends on their uptake by and development within their tsetse fly vectors. Tsetse susceptibility to such trypanosome infection seems to be controlled by maternally inherited rickettsia-like organisms (RLOs) (Fig. 1) and it now seems that the RLOs may exert this effect by controlling midgut lectins in the fly. Ian Maudlin and Susan Welburn explain the latest findings.  相似文献   

4.
Studies were made of infection rates of trypanosomes in the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae) when maintained in vivo (rabbits) or in vitro on high quality, gamma-irradiated, sterile defibrinated bovine blood, obtained from the Entomology Unit of the International Atomic Energy Agency (IAEA). For both Trypanosoma congolense Broden and T. b. brucei Plimmer & Bradford, in vitro maintenance significantly reduced the proportion of flies that developed mature metacyclic trypanosome infections.  相似文献   

5.
Abstract .In a single generation of selection, two lines of Glossina morsitans centralis were established that differed significantly in susceptibility to Trypanosoma congolense clone IL 1180. Reciprocal crosses demonstrated that susceptibility was a maternally inherited trait. Differences between the lines, to all phases of the trypanosome infection, were maintained for eight generations, whereas differences in susceptibility to midgut infections were maintained for twenty-eight generations. Thereafter, the lines did not differ in susceptibility to Trypanosoma congolense IL 1180. Susceptibility to infections with Trypanosoma congolense IL 1180 was only a weak predictor of susceptibility to T. congolense clones IL 13-E3 and K60/1, as well as clone T. brucei brucei STIB 247-L. However, the susceptible and refractory lines displayed these phenotypes when tested with Trypanosoma vivax, indicating that the factors that affect susceptibility to trypanosomes are expressed both within and outside the midgut.  相似文献   

6.
The course of Trypanosoma congolense infections in Glossina morsitans morsitans was followed by electron-microscopic examination of ultrathin sections of the guts and proboscises of infected flies. Guts dissected from flies 7 days after infection with culture procyclic forms of T. congolense had heavy trypanosome infections in the midgut involving both the endo- and ectoperitrophic spaces. Trypanosomes were also seen in the process of penetrating the fully formed peritrophic membrane in the central region of the midgut. By post infection day 21, trypanosomes had reached the proboscis of the fly and were found as clumps of epimastigote forms attached to the labrum by hemidesmosomes between their flagella and the chitinous lining of the food canal. Desmosome connections were observed between the flagella of adjacent epimastigotes. Flies examined at postinfection days 28 and 42 had, in addition to the attached forms in the labrum, free forms in the hypopharynx.  相似文献   

7.
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.  相似文献   

8.
The activity of lectins in different species of tsetse was compared in vivo by the time taken to remove all trypanosomes from the midgut following an infective feed and in vitro by agglutination tests. Teneral male Glossina pallidipes Austen, G. austeni Newstead and G. p. palpalis R-D. removed 50% of all Trypanosoma brucei rhodesiense Stephens & Fantham infections within 60 h. A 'refractory' line of G. m. morsitans Westwood took 170 h to kill 50% infections while a 'susceptible' line of the same species failed to kill 50%. Agglutination tests with midgut homogenates showed differences between fly stocks which accorded with differences in rate of trypanosome killing in vivo. Flies fed before an infective feed were able to remove trypanosomes from their midguts more quickly than flies infected as tenerals. Increasing the period of starvation before infection increased the susceptibility to trypanosome infection of non-teneral flies. Teneral flies showed little agglutinating activity in vitro, suggesting that lectin is produced in response to the bloodmeal. Feeding flies before infection also abolished the differences in rate of trypanosome killing found between teneral 'susceptible' and 'refractory' G. m. morsitans, suggesting that maternally inherited susceptibility to trypanosome infection is a phenomenon limited to teneral flies. Electron micrographs of midguts of G. m. morsitans suggest that procyclic trypanosomes are killed by cell lysis, presumably the result of membrane damage caused by lectin action.  相似文献   

9.
Newly emerged Glossina m.morsitans Westwood tsetse flies lack a peritrophic membrane which develops to fully line the midgut after c. 80-90 h. Midgut lectins are mainly associated with the peritrophic membrane. Lectin levels in the blood-free gut of adult flies rise slowly up to 8 days and then rapidly to at least 14 days post-eclosion (when the last of our recordings was made). Despite starving flies for 4 days prior to the agglutination assay, gut lectin levels in older flies are 100-200 times more than those in newly ecloded flies. This is inconsistent with the idea that there is a simple relationship between lectins and the protection of tsetse flies against trypanosome infection. Various theories put forward to account for age-dependent variation in the ability of tsetse to become infected with trypanosomes are discussed in the light of these findings.  相似文献   

10.
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.  相似文献   

11.
Trypanosoma brucei brucei infections which establish successfully in the tsetse fly midgut may subsequently mature into mammalian infective trypanosomes in the salivary glands. This maturation is not automatic and the control of these events is complex. Utilising direct in vivo feeding experiments, we report maturation of T. b. brucei infections in tsetse is regulated by antioxidants as well as environmental stimuli. Dissection of the maturation process provides opportunities to develop transmission blocking vaccines for trypanosomiasis. The present work suggests L-cysteine and/or nitric oxide are necessary for the differentiation of trypanosome midgut infections in tsetse.  相似文献   

12.
Tsetse-transmitted trypanosomiasis poses a serious threat to human and animal health in sub-Saharan Africa. The majority of tsetse flies ( Glossina spp.) in a natural population will not develop a mature infection of either Trypanosoma congolense or Trypanosoma brucei sp. because of refractoriness, a phenomenon that is affected by different factors, including the tsetse fly's immune defence. Starvation of tsetse flies significantly increases their susceptibility to the establishment of a trypanosome infection. This paper reports the effects of nutritional stress (starvation) on (a) uninduced baseline levels of gene expression of the antimicrobial peptides attacin, defensin and cecropin in the tsetse fly, and (b) levels of expression induced in response to bacterial ( Escherichia coli ) or trypanosomal challenge. In newly emerged, unfed tsetse flies, starvation significantly lowers baseline levels of antimicrobial peptide gene expression, especially for attacin and cecropin. In response to trypanosome challenge, only non-starved older flies showed a significant increase in antimicrobial peptide gene expression within 5 days of ingestion of a trypanosome-containing bloodmeal, especially with T. brucei bloodstream forms. These data suggest that a decreased expression of immune genes in newly hatched flies or a lack of immune responsiveness to trypanosomes in older flies, both occurring as a result of fly starvation, may be among the factors contributing to the increased susceptibility of nutritionally stressed tsetse flies to trypanosome infection.  相似文献   

13.
A multidisciplinary work was undertaken in the agropastoral zone of Sidéradougou, Burkina Faso to try to elucidate the key factors determining the presence of tsetse flies. In this study the PCR was used to characterize trypanosomes infecting the vector ( Glossina tachinoides and Glossina palpalis gambiensis ) and the host, i.e. cattle. A 2-year survey involved dissecting 2211 tsetse of the two Glossina species. A total of 298 parasitologically infected tsetse were analysed by PCR. Trypanosoma vivax was the most frequently identified trypanosome followed by the savannah type of T. congolense and, to a lesser extent, the riverine forest type of T. congolense , and by T. brucei . No cases of T. simiae were found. From the 107 identified infections in cattle, the taxa were the same, but T. congolense savannah type was more frequent, whereas T. vivax and T. congolense riverine forest types were found less frequently. A correlation was found between midgut infection rates of tsetse, nonidentified infections and reptile bloodmeals. These rates were higher in G.p. gambiensis , and in the western part of the study area. T. vivax infections were related to cattle bloodmeals, and were more frequent in G. tachinoides and in the eastern study area. The PCR results combined with bloodmeal analysis helped us to establish the relationships between the vector and the host, to assess the trypanosome challenge in the two parts of the area, to elucidate the differences between the two types of T. congolense , and to suspect that most midgut infections were originating from reptilian trypanosomes.  相似文献   

14.
The tsetse fly transmitted salivarian trypanosome, Trypanosoma congolense of the subgenus Nanomonas, is the most significant of the trypanosomes with respect to the pathology of livestock in sub-Saharan Africa. Unlike the related trypanosome Trypanosoma brucei of the subgenus Trypanozoon, the major surface molecules of the insect stages of T. congolense are poorly characterized. Here, we describe the purification and structural characterization of the glutamic acid and alanine-rich protein, one of the major surface glycoproteins of T. congolense procyclic and epimastigote forms. The glycoprotein is a glycosylphosphatidylinositol-anchored molecule with a galactosylated glycosylphosphatidylinositol anchor containing an sn-1-stearoyl-2-l-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol phospholipid moiety. The 21.6-kDa polypeptide component carries two large mannose- and galactose-containing oligosaccharides linked to threonine residues via phosphodiester linkages. Mass spectrometric analyses of tryptic digests suggest that several or all of the closely related glutamic acid and alanine-rich protein genes are expressed simultaneously in a T. congolense population growing in vitro.  相似文献   

15.
African trypanosomes are flagellated protozoan parasites transmitted by the bite of tsetse flies and responsible for sleeping sickness in humans. Their complex development in the tsetse digestive tract requires several differentiation and migration steps that are thought to rely on trypanosome motility. We used a functional approach in vivo to demonstrate that motility impairment prevents trypanosomes from developing in their vector. Deletion of the outer dynein arm component DNAI1 results in strong motility defects but cells remain viable in culture. However, although these mutant trypanosomes could infect the tsetse fly midgut, they were neither able to reach the foregut nor able to differentiate into the next stage, thus failing to complete their parasite cycle. This is the first in vivo demonstration that trypanosome motility is essential for the accomplishment of the parasite cycle.  相似文献   

16.
African trypanosome species were identified using the Polymerase Chain Reaction (PCR) by targeting repetitive DNA for amplification. Using oligonucleotide primers designed to anneal specifically to the satellite DNA monomer of each species/subgroup, we were able to accurately identify Trypanosoma simiae, three subgroups of T. congolense, T. brucei and T. vivax. The assay was sensitive and specific, detecting one trypanosome unequivocally and showing no reaction with non-target trypanosome DNA or a huge excess of host DNA. The assay was used to identify developmental stage trypanosomes in the tsetse fly. The use of radioisotopes was not necessary and mixed infections could be detected easily by incorporating more than one set of primers in a single reaction. The use of crude preparations of template made the process very rapid. The methodology should be suitable for large-scale epidemiological studies.  相似文献   

17.
Walshe DP  Lehane MJ  Haines LR 《PloS one》2011,6(11):e26984
The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium) of the fly when it takes the first (infective) bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis) infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon) brucei brucei and Trypanosoma (Nannomonas) congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e.) are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes) does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed.  相似文献   

18.
Abstract. Teneral Glossina morsitans centralis and G. brevipalpis were fed in vitro upon medium containing procyclic Trypanosoma brucei brucei derived from the midguts of G. m. centralis or G. brevipalpis which had immature trypanosome infections. The tsetse were then maintained on rabbits and, on day 31, were dissected to determine the infection rates. In G. m. centralis the midgut and salivary gland infection rates by T. b. brucei were 46.0% and 27.0% with procyclic trypanosomes from G. m. centralis, and 45.4% and 24.7% with procyclic trypanosomes from G. brevipalpis, respectively. In G. brevipalpis the rates were 20.2% and 0.0% with procyclic trypanosomes from G. m. centralis, and 28.0% and 0.0% with procyclic trypanosomes from G. brevipalpis, respectively. Teneral G. m. centralis and G. brevipalpis were also fed similarly upon procyclic T. b. brucei derived from G.m.centralis or G. brevipalpis on day 31 of infection, the former tsetse species had mature infections while the latter were without infections in the salivary glands. In G.m.centralis the infection rates in the midgut and salivary glands were 48.9% and 17.0%, and 38.0% and 17.0% when fed on procyclic trypanosomes from G.m.centralis and G. brevipalpis, respectively. In G. brevipalpis the rates were 21.5% and 0.0%, and 10.7% and 0.0% with procyclic trypanosomes of G.m.centralis and G. brevipalpis origin, respectively. Thus, procyclic T. b. brucei from susceptible G.m.centralis could not complete cyclical development in refractory G. brevipalpis, whereas those from G. brevipalpis developed to metatrypanosomes in the salivary glands of G.m.centralis. Teneral and 15-day-old non-teneral G.m.centralis were fed in vitro upon heparinized goat's blood containing T. b. brucei bloodstream trypomastigotes, or upon medium containing procyclic T. b. brucei derived from G.m.centralis with mature infections. On day 31 their infection rates were determined. The infection rates by T. b. brucei in the midgut and salivary glands of G.m.centralis fed on the infected blood were 70.4% and 40.4% when fed as teneral tsetse, as against 15.3% and 4.0% when fed as non-teneral tsetse. Those tsetse which were fed on the medium containing procyclic trypanosomes showed rates of 50.0% and 25.6%, as against 11.6% and 2.5%, respectively. It would appear, therefore, that maturation of T. b. brucei in tsetse is probably not determined simply by an interaction between lectin and procyclic trypanosomes in the midgut of non-teneral tsetse, but it is the result of a complex interaction between many interrelated physiological factors of both the trypanosome and the tsetse vector.  相似文献   

19.
Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 2.4% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannamyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.  相似文献   

20.
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号