首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Summary A 2.1-kb SStI fragment including the rp49 gene and the 3 end of the -serendipity gene has been cloned and sequenced in Drosophila pseudoobscura. rp49 maps at region 62 on the tip of chromosome II of this species. Both the coding and flanking regions have been aligned and compared with those of D. subobscura. There is no evidence for heterogeneity in the rate of silent substitution between the rp49 coding region and the rate of substitutions in flanking regions, the overall silent divergence per site being 0.19. Noncoding regions also differ between both species by different insertions/deletions, some of which are related to repeated sequences. The rp49 region of D. pseudoobscura shows a strong codon bias similar to those of D. subobscura and D. melanogaster. Comparison of the rates of silent (K S ) and nonsilent (K a ) substitutions of the rp49 gene and other genes completely sequenced in D. pseudoobscura and D. melanogaster confirms previous results indicating that rp49 is evolving slowly both at silent and nonsilent sites. According to the data for the rp49 region, D. pseudoobscura and D. subobscura lineages would have diverged some 9 Myr ago, if one assumes a divergence time of 30 Myr for the melanogaster and obscura groups.Offprint requests to: C. Segarra  相似文献   

2.
We report the results of a sequential gel electrophoretic study of protein variation in Drosophila melanogaster and its comparison with D. pseudoobscura. The number of alleles and mean heterozygosity were lower in D. melanogaster than in D. pseudoobscura. On the other hand, geographical populations of Drosophila melanogaster have been shown to be much more differentiated than those of D. pseudoobscura. The results suggest that in D. melanogaster low-frequency alleles have been lost during the colonization process and that major alleles have become differentiated among populations. Population bottlenecks, due to various causes, appear to have played a significant role in the shaping of genetic variation in natural populations of many species. It is proposed that a comparison of genetic variation at homologous gene loci between related species can bring out effects of historical bottlenecks and provide an alternative approach for analyzing causes of genetic variation in natural populations.We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

3.
The Gpdh genomic region has been cloned and sequenced in Drosophila pseudoobscura. A total of 6.8 kb of sequence was obtained, encompassing all eight exons of the gene. The exons have been aligned with the sequence from D. melanogaster, and the rates of synonymous and nonsynonymous substitution have been compared to those of other genes sequenced in these two species. Gpdh has the lowest rate of nonsynonymous substitution yet seen in genes sequenced in both D. pseudoobscura and D. melanogaster. No insertion/deletion events were observed, and the overall architecture of the gene (i.e., intron sites, etc.) is conserved. An interesting amino acid reversal was noted between the D. melanogaster Fast allele and the D. pseudoobscura gene.  相似文献   

4.
Genes encoding reproductive proteins often diverge rapidly due to positive selection on nucleotide substitutions. While this general pattern is well established, the extent to which specific reproductive genes experience similar selection in different clades has been little explored, nor have possible targets of positive selection other than nucleotide substitutions, such as indels, received much attention. Here, we inspect for the signature of positive selection in the genes encoding five accessory gland proteins (Acps) (Acp26Aa, Acp32CD, Acp53Ea, Acp62F, and Acp70A) originally described from Drosophila melanogaster but with recognizable orthologues in the D. pseudoobscura subgroup. We compare patterns of selection within the D. psuedoobscura subgroup to those in the D. melanogaster subgroup. Similar patterns of positive selection were found in Acp26Aa and Acp62F in the two subgroups, while Acp53Ea and Acp70A experienced purifying selection in both subgroups. These proteins have thus remained targets for similar types of selection over long (>21-MY) periods of time. We also found several indel substitutions and polymorphisms in Acp26Aa and Acp32CD. These indels occur in the same regions as positively selected nucleotide substitutions for Acp26Aa in the D. pseudoobscura subgroup but not in the D. melanogaster subgroup. Rates of indel substitution within Acp26Aa in the D. pseudoobscura subgroup were up to several times those in noncoding regions of the Drosophila genome. This suggests that indel substitutions may be under positive selection and may play a key role in the divergence of some Acps. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Willis Swanson]  相似文献   

5.
Contrary to the classical view, a large amount of non-coding DNA seems to be selectively constrained in Drosophila and other species. Here, using Drosophila miranda BAC sequences and the Drosophila pseudoobscura genome sequence, we aligned coding and non-coding sequences between D. pseudoobscura and D. miranda, and investigated their patterns of evolution. We found two patterns that have previously been observed in comparisons between Drosophila melanogaster and its relatives. First, there is a negative correlation between intron divergence and intron length, suggesting that longer non-coding sequences may contain more regulatory elements than shorter sequences. Our other main finding is a negative correlation between the rate of non-synonymous substitutions (d N) and codon usage bias (F op), showing that fast-evolving genes have a lower codon usage bias, consistent with strong positive selection interfering with weak selection for codon usage.  相似文献   

6.
Summary Single-fly polymerase chain reaction amplification and direct DNA sequencing revealed high levels of length polymorphism in the threonine-glycine encoding repeat region of theperiod (per) gene in natural populations ofDrosophila melanogaster. DNA comparison of two alleles of identical lengths gave a high number of synonymous substitutions suggesting an ancient time of separation. However detailed examination of the sequences of different Thr-Gly length variants indicated that this divergence could be understood in terms of four deletion/insertion events. InDrosophila pseudoobscura a length polymorphism is observed in a five-amino acid degenerate repeat, which corresponds tomelanogaster's Thr-Gly domain. In spite of the differences betweenD. melanogaster andD. pseudoobscura in the amino acid sequence of the repeats, the predicted secondary structures suggest evolutionary and mechanistic constraints on theper protein of these two species.  相似文献   

7.
8.
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal tissues (malpighian tubules and brain) were analyzed and protein divergence was calculated based on presence vs absence. Both testis and ovary proteins showed higher divergence than nongonadal proteins, and also a highly significant positive correlation with postzygotic reproductive isolation but a weaker correlation with prezygotic reproductive isolation. Particularly, a positive and significant correlation was found between proteins expressed in the testis and postzygotic reproductive isolation among closely related species such as the within-phylad species in the D. virilis group. The high levels of male-reproductive-tract protein divergence between species might be associated with F1 hybrid male sterility among closely related species. If so, a lower level of ovary protein divergence should be expected on the basis that F1 female hybrids are fully fertile. However, this is not necessarily true if relatively few genes are responsible for the reproductive isolation observed between closely related species, as recent studies seem to suggest. We suggest that the faster rate of evolution of gonadal proteins in comparison to nongonadal proteins and the association of that rate with postzygotic reproductive isolation may be the result of episodic and/or sexual selection on male and female molecular traits. Correspondence to: A. Civetta  相似文献   

9.
Summary The esterase 5 (Est-5 = gene, EST 5 = protein) enzyme in Drosophila pseudoobscura is encoded by one of three paralogous genes, Est-5A, Est5B, and Est-5C, that are tightly clustered on the right arm of the X chromosome. The homologous Est-6 locus in Drosophila melanogaster has only one paralogous neighbor, Est-P. Comparisons of coding and flanking DNA sequences among the three D. pseudoobscura and two D. melanogaster genes suggest that two paralogous genes were present before the divergence of D. pseudoobscura from D. melanogaster and that, later, a second duplication occurred in D. pseudoobscura. Nucleotide sequences of the coding regions of the three D. pseudoobscura genes showed 78–85% similarity in pairwise comparisons, whereas the relatedness between Est-6 and Est-P was only 67%. The higher degree of conservation in D. pseudoobscura likely results from the comparatively recent divergence of Est-5B and Est-5C and from possible gene conversion events between Est-5A and Est-5B. Analyses of silent and replacement site differences in the two exons of the paralogous and orthologous genes in each species indicate that common selective forces are acting on all five loci. Further evidence for common purifying selective constraints comes from the conservation of hydropathy profiles and proposed catalytic residues. However, different levels of amino acid substitution between the paralogous genes in D. melanogaster relative to those in D. pseudoobscura suggest that interspecific differences in selection also exist.Offprint requests to: R.C. Richmond  相似文献   

10.
Cytochrome proteins perform a broad spectrum of biological functions ranging from oxidative metabolism to electron transport and are thus essential to all organisms. The b-type cytochrome proteins bind heme noncovalently, are expressed in many different forms and are localized to various cellular compartments. We report the characterization of the cytochrome b5 (Cyt-b) gene of Drosophila virilis and compare its structure to the Cyt-b gene of Drosophila melanogaster. As in D. melanogaster, the D. virilis gene is nuclear encoded and single copy. Although the intron/exon structures of these homologues differ, the Cyt-b proteins of D. melanogaster and D. virilis are approximately 75% identical and share the same size coding regions (1,242 nucleotides) and protein products (414 amino acids). The Drosophila Cyt-b proteins show sequence similarity to other b-type cytochromes, especially in the N-terminal heme-binding domain, and may be targeted to the mitochondrial membrane. The greatest levels of similarity are observed in areas of potential importance for protein structure and function. The exon sequences of the D. virilis Cyt-b gene differ by a total of 292 base changes. However, 62% of these changes are silent. The high degree of conservation between species separated by 60 million years of evolution in both the DNA and amino acid sequences suggests this nuclear cytochrome b5 locus encodes an essential product of the Drosophila system.Correspondence to: C.E. Rozek  相似文献   

11.
Carracedo MC  Suarez C  Casares P 《Genetica》2000,108(2):155-162
The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Summary Mitochondrial DNA (mtDNA) restriction site maps for nine species of theDrosophila obscura subgroup and forDrosophila melanogaster were established. Taking into account all restriction enzymes (12) and strains (45) analyzed, a total of 105 different sites were detected, which corresponds to a sample of 3.49% of the mtDNA genome. Based on nucleotide divergences, two phylogenetic trees were constructed assuming either constant or variable rates of evolution. Both methods led to the same relationships. Five differentiated clusters were found for theobscura subgroup species, one Nearctic, represented byDrosophila pseudoobscura, and four Palearctic, two grouping the related triads of speciesDrosophila subobscura, Drosophila madeirensis, Drosophila guanche, andDrosophila ambigua, Drosophila obscura, Drosophila subsilvestris, and two more represented by one species each,Drosophila bifasciata, andDrosophila tristis. The different Palearctic clusters are as distant between themselves as with the Nearctic one. For the related speciesD. subobscura, D. madeirensis, andD. guanche, the pairD. subobscura-D. madeirensis is the closest one. The relationships found by nucleotide divergence were confirmed by differences in mitochondrial genome size, with related species sharing similar genome lengths and differing from the distant ones. The total mtDNA size range for theobscura subgroup species was from 15.5 kb forD. pseudoobscura to 17.1 forD. tristis.  相似文献   

13.
Jin S  Hu GA  Qian YH  Zhang L  Zhang J  Qiu G  Zeng QT  Gui JF 《Genetica》2005,125(2-3):223-230
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5–10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.  相似文献   

14.
An electrophoretic study was carried out to compare the geographic pattern of genetic variation in Drosophila simulans with that of its sibling species, Drosophila melanogaster. An identical set of 32 gene-protein loci was studied in four geographically distant populations of D. simulans and two populations of D. melanogaster, all originating from Europe and Africa. The comparison yielded the following results: (1) tropical populations of D. simulans were, in terms of the number of unique alleles, average heterozygosity per locus, and percentage of loci polymorphic, more variable than conspecific-temperate populations; (2) some loci in both species showed interpopulation differences in allele frequencies that suggest latitudinal clines; and (3) temperate-tropical genetic differentiation between populations was much less in D. simulans than in D. melanogaster. Similar differences between these two species have previously been shown for chromosomal, quantitative, physiological, and middle-repetitive DNA variation. Estimates of N m (number of migrants per generation) from the spatial distribution of rare alleles suggest that both species have similar levels of interpopulation gene flow. These observations lead us to propose two competing hypotheses: the low level of geographic differentiation in D. simulans is due to its evolutionarily recent worldwide colonization and, alternatively, D. simulans has a narrower niche than D. melanogaster. Geographic variation data on different genetic elements (e.g., mitochondrial DNA, two-dimensional proteins, etc.) are required before these hypotheses can be adequately tested.We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

15.
《Fly》2013,7(2):98-101
Drosophila species vary in the rates at which females remate and the number of sperm they receive in the laboratory. In species such as D. melanogaster and D. pseudoobscura, in which females receive thousands of sperm and remate infrequently compared with species such as D. hydei and D. nigrospiracula, where females receive only a few hundred sperm and remate many times in a day, wild caught females should produce far more progeny. We tested this prediction by collecting, directly from nature, females of six species whose remating rates and number of sperm received vary from high to low and assessing the proportion of females with sperm and the number of progeny females produce. Over 95% of D. pseudoobscura and D. melanogaster females were inseminated while far fewer of the other species contained any sperm. In addition, D, pseudoobscura females produced progeny for over two weeks, D. melanogaster for over a week, while D. hydei and D. nigrospiracula females ran out of sperm after 1–2 d. These observations suggest extreme sperm limitation in these latter species.  相似文献   

16.
Recent work has shown that Drosophila melanogaster genes with fast-evolving nonsynonymous sites have lower codon usage bias. This pattern has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. Here we have looked for this correlation in a much larger and less biased dataset, comprising 630 gene pairs from D. melanogaster and D. yakuba. We confirmed that there is a negative correlation between the rate of nonsynonymous substitutions (dN) and codon bias in D. melanogaster. We then tested the interference hypothesis and other alternative explanations, including one involving gene expression. We found that dN indeed correlates with the level of gene expression. Given that gene expression is a strong determinant of codon bias, the relationship between dN and codon bias might be a by-product of gene expression. However, our tests show that none of the hypotheses we consider seem to explain the data fully.This article contains online supplementary material.Reviewing Editor: Dr. John Huelsenbeck  相似文献   

17.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

18.
Heavy metals are essential components of biological systems but are extremely toxic at high doses. As a result, we hypothesized that perception of heavy metals through gustation may exist in Drosophila melanogaster. In this study, we investigated the behavioral effects of iron, copper, zinc, and cadmium on D. melanogaster gustation, oviposition, and pupation-site selection. In addition, we examined the biological effects of heavy metals on the fruit fly survival and reproductive success. Our results illustrate that D. melanogaster responds behaviorally to the presence of high concentrations of heavy metals in food. All metals acted as repellents to the fruit flies at high doses, with the egg-laying and feeding of the female flies significantly decreasing. Furthermore, supplementation of heavy metals in the culture medium reduced survival to the adult stage and shortened the life span of adult flies. From these observations, we speculate that D. melanogaster avoidance behavior towards high concentrations of heavy metals may have a positive effect on their survival and reproductive success in nature, particularly in the presence of metal-contaminated food sources.  相似文献   

19.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

20.
Huttunen S  Vieira J  Hoikkala A 《Genetica》2002,115(2):159-167
Genes found to affect male courtship song characters in Drosophila melanogaster are good candidates when tracing genes responsible for species-specific songs in other Drosophila species. It has previously been shown that Thr–Gly repeat length variation at the period gene affects song traits in D. melanogaster, which gives the repetitive regions a special interest. In this work, we have characterised the patterns of nucleotide variation for gene regions containing two Gly and one Gln–Ala repeat in another D. melanogaster song gene, no-on-transient A, in D. virilis group species. The levels of nucleotide variability in D. virilis nonA were similar to those found for other genes of the species, and the gene sequences showed no signs of deviation from neutrality. The Gly 2 repeat preceding the central domain of the gene exhibited length variation, which did not, however, correlate with song variation either within D. virilis or between the species of D. virilis group. The Gly 3 repeat located on the other side of the central domain showed amino acid divergence parallel to the consensus phylogeny of the D. virilis group species. The species of the virilis subgroup having Asn after the first three glycines in this repeat have simple songs with no species-specificity, while the species of the montana subgroup having two Gly or Asn–Ser in this site have unique courtship songs. Amino acid differences between the species in this repeat may, however, reflect species phylogeny rather than have an effect on song divergence per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号