首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection with human immunodeficiency virus (HIV) is characterized by the gradual depletion of CD4+ T lymphocytes. The incorporation of the concept of apoptosis as a rationale to explain progressive T cell depletion has led to growing research in this field during the last 10 years. In parallel, the biochemical pathways implicated in programmed cell death have been extensively studied. Thus, the influence of mitochondrial control in the two major apoptotic pathways-the extrinsic and intrinsic pathways-is now well admitted. In this review, we summarized our current knowledge of the different pathways involved in the death of T cells in the course of HIV infection.  相似文献   

2.
Apoptosis, or programmed cell death, is a key event in biologic homeostasis but is also involved in the pathogenesis of many human diseases including human immunodeficiency virus (HIV) infection. Although multiple mechanisms contribute to the gradual T cell decline that occurs in HIV-infected patients, programmed cell death of uninfected bystander T lymphocytes, including CD4+ and CD8+ T cells, is an important event leading to immunodeficiency. The HIV envelope glycoproteins (Env) play a crucial role in transducing this apoptotic signal after binding to its receptors, the CD4 molecule and a coreceptor, essentially CCR5 and CXCR4. Depending on Env presentation, the receptor involved and the complexity of target cell contact, apoptosis induction is related to death receptor and/or mitochondria-dependent pathways. This review summarizes current knowledge of Env-mediated cell death leading to T cell depletion and clinical complications and covers the sometimes conflicting studies that address the possible mechanisms of T cell death.  相似文献   

3.
Apoptosis, a phenotype of programmed cell death involved in development and tissue homeostasis of multicellular organisms, brings into two major pathways and implies a central sensor: the mitochondria. Abnormalities in the cell death control can lead to a variety of diseases and many pathogenic agents target the mitochondria, especially affecting its permeability in order to induce cell death. HIV infection is linked to progressive CD4 T cell depletion. Among the different hypothesis that may explain T cell depletion, apoptosis is one of the main described mechanisms. This review provides current knowledge in HIV-mediated mitochondrial damage due to (i) HIV-specific proteins, (ii) death-by-neglect and (iii) side effects of the HIV drugs.  相似文献   

4.
Han SI  Kim YS  Kim TH 《BMB reports》2008,41(1):1-10
Apoptosis is considered to be a programmed and controlled mode of cell death, whereas necrosis has long been described as uncontrolled and accidental cell death resulting from extremely harsh conditions. In the following review, we will discuss the features and physiological meanings as well as recent advances in the elucidation of the signaling pathways of both apoptotic cell death and programmed necrotic cell death.  相似文献   

5.
Chronic hepatitis C virus (HCV) infection is associated with increased levels of peripheral T cell apoptosis. We aimed to study whether T cell apoptosis markers indicate pathways that may contribute to clinical progression in HCV monoinfected and HIV–HCV coinfected patients. Activation of the extrinsic apoptosis pathways was measured by levels of death receptor Fas, initiator caspase 8 and effector caspases 3 and 7 activity and Annexin V binding on peripheral CD4 and CD8 T cells of HCV monoinfected and HIV/HCV coinfected patients, as well as healthy controls and HIV-infected, hepatitis B virus-infected and primary biliary cirrhosis disease controls. Association with liver fibrosis was assessed by biopsy or by transient elastography. HCV monoinfected and HIV–HCV coinfected patients displayed enhanced peripheral CD4 and CD8 T cell apoptosis. Caspase 8 activity was highest in HIV–HCV coinfection, without enhanced downstream activity of caspases 3 and 7. Level of peripheral T cell apoptosis was independent of liver fibrosis or other disease parameters in all disease groups. The extrinsic apoptosis pathway is upregulated in HCV monoinfection and HIV–HCV coinfection, but this is independent of liver disease severity.  相似文献   

6.
Programmed cell elimination is an important pathological mediator of disease. Multiple pathways to programmed cell death have been delineated, including apoptosis, autophagy and programmed necrosis. Cross-talk between the signaling pathways mediating each process has made it difficult to define specific mechanisms of in vivo programmed cell death. For this reason, many “apoptotic” diseases may involve other death signaling pathways. Recent advances in genetic complementation using mouse knockout models are helping to dissect apoptotic and necrotic cell death in different pathological states. The current state of research in this area is reviewed, focusing upon new findings describing the role of programmed necrosis induced by the mitochondrial permeability transition in mouse models of heart failure and diabetes.Key words: apoptosis, necrosis, mitochondrial permeability transition pore  相似文献   

7.
We have investigated the relative contribution of apoptosis or programmed cell death (PCD) to cell killing during acute infection with T-cell-tropic, cytopathic human immunodeficiency virus type 1 (HIV-1), by employing diverse strategies to inhibit PCD or to detect its common end-stage sequelae. When Bcl-2-transfected cell lines were infected with HIV-1, their viability was only slightly higher than that of control infections. Although the adenovirus E1B 19-kDa protein has been reported to be a stronger competitor of apoptosis than Bcl-2, it did not inhibit HIV-mediated cell death better than Bcl-2 protein. Competition for Fas ligand or inactivation of the Fas pathway secondary to intracellular mutation (MOLT-4 T cells) also had modest effects on overall cell death during acute HIV infection. In contrast to these observations with HIV infection or with HIV envelope-initiated cell death, Tat-expressing cell lines were much more susceptible (200% enhancement) to Fas-induced apoptosis than controls and Bcl-2 overexpression strongly (75%) inhibited this apoptotic T-cell death. PCD associated with FasR ligation resulted in the cleavage of common interleukin-1beta-converting enzyme (ICE)-protease targets, poly(ADP-ribose) polymerase (PARP) and pro-ICE, whereas cleaved products were not readily detected during HIV infection of peripheral blood mononuclear cells or T-cell lines even during periods of extensive cell death. These results indicate that one important form of HIV-mediated cell killing proceeds by a pathway that lacks the characteristics of T-cell apoptosis. Our observations support the conclusion that at least two HIV genes (env and tat) can kill T cells by distinct pathways and that an envelope-initiated process of T-cell death can be discriminated from apoptosis by many of the properties most closely associated with apoptotic cell death.  相似文献   

8.
Glucose transport and apoptosis   总被引:5,自引:0,他引:5  
The transport and metabolism of glucose modify programmed cell death in a number of different cell types. This review presents three cell death paradigms that link a decrease in glucose transport to apoptosis. Although these pathways overlap, the glucose-dependent stimuli that trigger cell death differ. These paradigms include glucose deprivation-induced ATP depletion and stimulation of the mitochondrial death pathway cascade; glucose deprivation-induced oxidative stress and triggering of Bax-associated events including the JNK/MAPK signalling pathways; and finally hypoglycemia-regulated expression of HIF-1, stabilization of p53 leading to an increase in p53-associated apoptosis. Several examples of each paradigm are presented. Future studies of glucose transport-associated apoptotic events will allow better understanding of the role of cellular metabolism in programmed cell death.  相似文献   

9.
Cell death can occur as an active, programmed event in response to cytotoxic injury or to endogenous growth limiting factors; the latter serve to maintain homeostasis of cell number in tissues. Cells seem to use different pathways for programmed death, as reflected by their different morphology and different biochemistry. Severe cell damage leading to incapacitation of essential cell functions such as ATP synthesis or the maintenance of membrane potential may lead to "necrosis". In any event, the incidence and rate of cell death increase with increasing signal intensity. Cytotoxic injury requires a certain number of primary insults; cell death will therefore occur only beyond a definable threshold. Growth factor control of cell death is receptor-mediated with dose-response relations including threshold phenomena follow the general principles of receptor kinetics. The occurrence of programmed cell death during the stages of carcinogenesis introduces a reversible component into this disease. Therefore, there may exist thresholds of dose or durations of exposure to certain carcinogens below which irreversible disease is not generated.  相似文献   

10.
Studies of human immunodeficiency virus (HIV) and nonhuman primate models of pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections have suggested that enhanced ex vivo CD4 T-cell death is a feature of pathogenic infection in vivo. However, the relative contributions of the extrinsic and intrinsic pathways to programmed T-cell death in SIV infection have not been studied. We report here that the spontaneous death rate of CD4+ T cells from pathogenic SIVmac251-infected rhesus macaques ex vivo is correlated with CD4 T-cell depletion and plasma viral load in vivo. CD4+ T cells from SIVmac251-infected macaques showed upregulation of the death ligand (CD95L) and of the proapoptotic proteins Bim and Bak, but not of Bax. Both CD4+ and CD8+ T cells from SIVmac251-infected macaques underwent caspase-dependent death following CD95 ligation. The spontaneous death of CD4+ and CD8+ T cells was not prevented by a decoy CD95 receptor or by a broad-spectrum caspase inhibitor (zVAD-fmk), suggesting that this form of cell death is independent of CD95/CD95L interaction and caspase activation. IL-2 and IL-15 prevented the spontaneous death of CD4+ and CD8+ T cells, whereas IL-10 prevented only CD8 T-cell death and IL-7 had no effect on T-cell death. Our results indicate that caspase-dependent and caspase-independent pathways are involved in the death of T cells in pathogenic SIVmac251-infected primates.  相似文献   

11.
Regulatory T cells (Tregs) play a critical role in the immune system to regulate peripheral tolerance and prevent autoimmunity. However, the relative importance of different mechanisms of Treg function remains obscure. In this article, we reveal a limited role for programmed cell death pathways in mediating Treg suppression of conventional T cells. We show that Tregs are able to suppress the proliferation of conventional T cells that are resistant to apoptosis (Bim(-/-), Bim(-/-)Puma(-/-), Bcl-2 transgenic) or receptor-interacting serine-threonine kinase-dependent necrosis (also referred to as regulated necrosis or necroptosis) (Ripk3(-/-)) in several in vitro and in vivo assays. These data suggest that programmed cell death pathways, such as apoptosis and receptor-interacting serine-threonine kinase-dependent necrosis, are not required for Treg-mediated suppression.  相似文献   

12.
In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently. Expressing HIV protease containing these mutations resulted in less cell death, caspase activation, and nuclear fragmentation than wild type (WT) HIV protease or HIV protease containing other mutations. The impaired induction of cell death was also associated with impaired cleavage of procaspase 8, a requisite event for HIV protease mediated cell death. Primary CD4 T cells expressing I54V or V82A protease underwent less cell death than with WT or other mutant proteases. Human T cells infected with HIV containing these mutations underwent less cell death and less Casp8p41 production than WT or HIV containing other protease mutations, despite similar degrees of viral replication. The reductions in cell death occurred both within infected cells, as well as in uninfected bystander cells. These data indicate that single point mutations within HIV protease which are selected in vivo can significantly impact the ability of HIV to kill CD4 T cells, while not impacting viral replication. Therefore, HIV protease regulates both HIV replication as well as HIV induced T cell depletion, the hallmark of HIV pathogenesis.  相似文献   

13.
Apoptotic death of CD4+ T lymphocytes is a major cause of the immunodeficiency caused by human immunodeficiency virus (HIV), but it is still unclear how this process precisely occurs. To characterize a potentially useful cellular model, we have analyzed the tendency of chronically HIV-infected CD4+ human cell lines of different origin to undergo apoptosis. We studied ACH-2 and U1 lines, derived from the CD4+ T-cell A301 and the promonocytic U937 cell lines, respectively, and induced apoptosis via several stimuli that trigger different pathways. Their capacity to regulate plasma membrane CD95 expression and to produce soluble CD95 was also analyzed. Using staurosporine, TNF-alpha plus cycloheximide, and gamma-radiations, we observed that ACH-2 were more sensitive to programmed cell death than A301, while U1 were less sensitive than U937. Both infected cell types had a lower sensitivity to CD95-induced apoptosis; the analysis of changes in mitochondrial membrane potential corroborated these observations. Plasma membrane CD95 was similarly regulated in all cell types, which, however, presented a different capacity to produce soluble CD95 molecules. Our in vitro results may offer a new perspective for developing further studies on the pathogenesis of HIV infection. A chronically infected cell line of lymphocytic origin is more susceptible to apoptosis than its parental cell type, while infected monocytic cells are less sensitive than their uninfected counterpart. Thus, it is possible to hypothesize that one of the reasons by which circulating monocytes survive and represent a viral reservoir is the capacity of HIV to decrease the sensitivity to apoptosis of this cell type. However, further studies on ex-vivo collected fresh cells, as well as on other cell lines, are urgently needed to confirm such hypothesis.  相似文献   

14.
Endoplasmic reticulum stress and apoptosis   总被引:3,自引:0,他引:3  
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.  相似文献   

15.
The identification of several lesion mimic mutants (LMM) that misregulate cell death constitutes a powerful tool to unravel programmed cell death (PCD) pathways in plants, particularly the hypersensitive response (HR), a form of PCD associated with resistance to pathogens. Recently, the characterization of novel LMM has enabled genes that might regulate cell death programmes to be identified as well as the dissection of defense signaling pathways and of crosstalk between multiple pathways in ways that might not be possible by studying the responses of wild-type plants to pathogens.  相似文献   

16.
Programmed cell elimination is an important pathological mediator of disease. Multiple pathways to programmed cell death have been delineated, including apoptosis, autophagy, and programmed necrosis. Cross-talk between the signaling pathways mediating each process has made it difficult to define specific mechanisms of in vivo programmed cell death. For this reason, many “apoptotic” diseases may involve other death signaling pathways. Recent advances in genetic complementation using mouse knock-out models are helping to dissect apoptotic and necrotic cell death in different pathological states. The current state of research in this area is reviewed, focusing upon new findings describing the role of programmed necrosis induced by the mitochondrial permeability transition in mouse models of heart failure and diabetes.  相似文献   

17.
Autophagy controls cellular catabolism in diverse eukaryotes and modulates programmed cell death in plants and animals. While studies of the unicellular yeast Saccharomyces cerevisiae have provided fundamental insights into the mechanisms of autophagy, the roles of cell death pathways in yeast are less well understood. Here, we describe widespread developmentally programmed nuclear destruction (PND) events that occur during yeast gametogenesis. PND is executed through apoptotic-like DNA fragmentation in coordination with an unusual form of autophagy that is most similar to mammalian lysosomal membrane permeabilization and mega-autophagy, a form of plant autophagic cell death. Undomesticated strains execute gametogenic PND broadly in maturing colonies to the apparent benefit of sibling cells, confirming its prominence during the yeast life cycle. Our results reveal that diverse cell-death-related processes converge during gametogenesis in a microbe distantly related to plants or animals, highlighting gametogenesis as a process during which programmed cell death mechanisms may have evolved.  相似文献   

18.
Programmed cell death mechanisms in neurological disease   总被引:2,自引:0,他引:2  
Programmed cell death (pcd) is a form of cell death in which the cell plays an active role in its own demise. Pcd plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including neurodegeneration, cancer, and ischemic vascular disease, among others. Over 100,000 published studies on one form of programmed cell death-apoptosis-have appeared, but recent studies from multiple laboratories suggest the existence of non-apoptotic forms of programmed cell death, such as autophagic programmed cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. Constructing a mechanistic taxonomy of all forms of pcd-based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd-should offer new insight into cell deaths associated with various disease states, and ultimately offer new therapeutic approaches.  相似文献   

19.
Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs) blocking inhibitory mediators interleukin (IL) 10, transforming growth factor (TGF) β, programmed death ligand (PD–L) 1 and herpes virus entry mediator (HVEM) were added to parallel cultures. Functional T cell regulation (FTR) was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials.  相似文献   

20.
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor‐induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号