首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone deacetyrase (HDAC) inhibitors induce growth arrest and differentiation of leukemia cell lines and tumor cells derived from a large variety of human tissues. Here we showed that HDAC inhibitors sodium butyrate, TSA, and valproate regulated the expression of Interleukin-18 (IL-18), a cytokine with antitumor and proinflammatory properties, in human acute myeloid leukemia cell lines U937 and HEL. Sodium butyrate increased expression of IL-18 protein and mRNA and activated 1357bp IL-18 gene promoter construct. IL-18 mRNA level was up-regulated by TSA or valproate, which also activated IL-18 full-length promoter. While sodium butyrate or TSA stimulated the 108-bp IL-18 minimal promoter, valproate failed to activate it, indicating that valproate may use a distinct mechanism from sodium butyrate and TSA to activate IL-18 gene expression.  相似文献   

2.
3.
Our research group recently reported that pancreatic endocrine cancer cell lines are sensitive to the HDAC inhibitor trichostatin A (TSA). In the present paper, we show that the combined treatment of pancreatic endocrine tumour cell lines with TSA and the DNA methyltransferase inhibitor 5‐aza‐2′‐deoxycytidine (DAC) determines a strong synergistic inhibition of proliferation mainly due to apoptotic cell death. Proteomic analysis demonstrates that the modulation of specific proteins correlates with the antiproliferative effect of the drugs. A schematic network clarifies the most important targets or pathways involved in pancreatic endocrine cancer growth inhibition by single or combined drug treatments, which include proteasome, mitochondrial apoptotic pathway and caspase related proteins, p53 and Ras related proteins. A comparison between the patterns of proteins regulated by TSA or DAC in endocrine and ductal pancreatic cancer cell lines is also presented.  相似文献   

4.
5.
6.
7.
《Epigenetics》2013,8(11):1315-1330
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.  相似文献   

8.
Promoter hypermethylation‐mediated inactivation of ID4 plays a crucial role in the development of solid tumours. This study aimed to investigate ID4 methylation and its clinical relevance in myeloid malignancies. ID4 hypermethylation was associated with higher IPSS scores, but was not an independent prognostic biomarker affecting overall survival (OS) in myelodysplastic syndrome (MDS). However, ID4 hypermethylation correlated with shorter OS and leukaemia‐free survival (LFS) time and acted as an independent risk factor affecting OS in acute myeloid leukaemia (AML). Moreover, ID4 methylation was significantly decreased in the follow‐up paired AML patients who achieved complete remission (CR) after induction therapy. Importantly, ID4 methylation was increased during MDS progression to AML and chronic phase (CP) progression to blast crisis (BC) in chronic myeloid leukaemia (CML). Epigenetic studies showed that ID4 methylation might be one of the mechanisms silencing ID4 expression in myeloid leukaemia. Functional studies in vitro showed that restoration of ID4 expression could inhibit cell proliferation and promote apoptosis in both K562 and HL60 cells. These findings indicate that ID4 acts as a tumour suppressor in myeloid malignancies, and ID4 methylation is a potential biomarker in predicting disease progression and treatment outcome.  相似文献   

9.
10.
Background:Decitabine is a potent anticancer hypomethylating agent and changes the gene expression through the gene''s promoter demethylation and also independently from DNA demethylation. So, the present study was designed to distinguish whether Decitabine, in addition to inhibitory effects on DNA methyltransferase, can change HDAC3 and HDAC7 mRNA expression in NALM-6 and HL-60 cancer cell lines.Methods:HL-60, NALM-6, and normal cells were cultured, and the Decitabine treatment dose was obtained (1 µM) through the MTT assay. Finally, HDAC3 and HDAC7 mRNA expression were measured by Real-Time PCR in HL-60 and NALM-6 cancerous cells before and after treatment. Furthermore, HDAC3 and HDAC7 mRNA expression in untreated HL-60 and NALM-6 cancerous cells were compared to normal cells.Results:Our results revealed that the expression of HDAC3 and HDAC7 in HL-60 and NALM-6 cells increases as compared to normal cells. After treatment of HL-60 and NALM-6 cells with Decitabine, HDAC3, and HDAC7 mRNA expression were decreased significantly.Conclusion:Our data confirmed that the effects of Decitabine are not limited to direct hypomethylation of DNMTs, but it can indirectly affect other epigenetic factors, such as HDACs activity, through converging pathways.Key Words: Decitabine, HDAC3, HDAC7, HL-60, NALM-6  相似文献   

11.
FucosyLated antigen expression, fucosyltransferase activitiesand expression of Fuc-TIV and Fuc-TVII genes have been measuredin the human leukemic cell lines KG1a, arrested at the undifferentiatedmyeloblast stage of maturation and KG1, arrested at the myeloblastand early promyelocytic stage. The results are compared withthose we earlier found for the later promyelocytic cell lineHL-60 and the myelocyte form into which HL-60 cells can be inducedto differentiate. These leukemic cell lines, and the differentiatedHL-60 cells, are believed to correspond to four successive stagesof myeloid maturation in the bone marrow. Fuc-TVII mRNA wasstrongly expressed in the myeloblastic KG1a cells but expressionwas less in KG1 and HL-60 cells. In contrast to the sharp fallin Fuc-TIV expression observed on differentiation of HL-60 cells,the expression of Fuc-TIV mRNA showed a progressive increasefrom KG1a to H1-60 cells; thus the peak of expression of thisgene was at the HL-60 promyelocyte stage. This peak correlatedwith an increase in fucosyltransferase activity with nonsialylatedacceptors and the transitory downregulation of cell surfacesialyl-Lex expression and upregulation of Lex, VIM-2 and Leyexpression. The variations in levels of expression of the fucosylatedantigens on the surface of the developing myelold cells thereforecorrelate with variations in mRNA expression arising from theindependent regulation of Fuc-TIV and Fuc-TVII genes.  相似文献   

12.
Rioja A  Pizzey AR  Marson CM  Thomas NS 《FEBS letters》2000,467(2-3):291-295
Farnesol preferentially inhibits proliferation and induces apoptosis of tumour-derived but not non-transformed cell lines. We investigated whether farnesol induces apoptosis of blasts from patients with acute myeloid leukaemia (AML) and leukaemic cell lines, as compared with normal, human primary haemopoietic cells. We show that 30 microM farnesol causes apoptosis of leukaemic cell lines of T- and B-lymphocyte, myeloid or erythroid lineages and primary blasts obtained from patients with AML. However, the same concentration did not kill primary monocytes, or quiescent or proliferating T-lymphocytes. We conclude that farnesol selectively kills AML blasts and leukaemic cell lines in preference to primary haemopoietic cells.  相似文献   

13.
The clinical activity of decitabine (5‐aza‐2‐deoxycytidine, DAC), a hypomethylating agent, has been demonstrated in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients. However, secondary resistance to this agent often occurs during treatment and leads to treatment failure. It is important to clarify the mechanisms underlying the resistance for improving the efficacy. In this study, by gradually increasing concentration after a continuous induction of DAC, we established the DAC‐resistant K562 cell line (K562/DAC) from its parental cell line K562. The proliferation and survival rate of K562/DAC was significantly increased, whereas the apoptosis rate was remarkably decreased than that of K562 after DAC treatment. In K562/DAC, a total of 108 genes were upregulated and 118 genes were downregulated by RNA‐Seq. In addition, we also observed aberrant expression of DDX43/H19/miR‐186 axis (increased DDX43/H19 and decreased miR‐186) in K562/DAC cells. Ectopic expression of DDX43 in parental K562 cells rendered cells resistant to the DAC. Taken together, we successfully established DAC‐resistant K562 cell line which can serve as a good model for investigating DAC resistance mechanisms, and DDX43/H19/miR‐186 may be involved in DAC resistance in K562.  相似文献   

14.
15.
16.
17.
18.
19.
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy‐resistant disease. The MUC1‐C oncoprotein governs critical pathways of tumorigenesis, including self‐renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1‐C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1‐C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1‐C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1‐C with silencing or pharmacologic inhibition with GO‐203 led to a decrease in active β‐catenin levels and, in‐turn, down‐regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1‐C was also associated with increased sensitivity of AML cells to Cytarabine (Ara‐C) treatment by a survivin‐dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1‐C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO‐203 with Ara‐C for the treatment of patients with AML.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号