首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amos FF  Ndao M  Ponce CB  Evans JS 《Biochemistry》2011,50(41):8880-8887
AP7 is a nacre-associated protein of the mollusk shell that forms supramolecular assemblies that nucleate single-crystal aragonite in vitro. AP7 possesses two major sequence regions: a random coil 30-amino acid N-terminal domain (AP7N) and a partially disordered 36-amino acid C-terminal domain (AP7C) that exhibits imperfect sequence homology to the C subclass of the intracellular RING domain family. We report here new findings that implicate the C-RING domain in AP7-mediated supramolecular assembly and single-crystal mineral formation. AP7 protein spontaneously self-assembles over a pH range of 4-9 and is monomeric at pH >9.5. AP7N and AP7C both oligomerize over the pH range of 4-9, with the AP7C sequence closely resembling AP7 in terms of particle morphology and size. In vitro mineralization experiments demonstrate that both AP7N and AP7C form supramolecular assemblies that nucleate single-crystal calcium carbonates. Comparison of previously published nuclear magnetic resonance-based structures of AP7C and AP7N reveals the significant presence of complementary anionic-cationic electrostatic molecular surfaces on AP7C that are not found on AP7N, and this may explain the noted discrepancies between the two domains in terms of self-assembly and single-crystal nucleation. We conclude that the C-RING-like sequence is an important site for AP7 self-association and mineral nucleation, and this represents the first known instance of a RING-like sequence performing these functions within an extracellular protein.  相似文献   

2.
Wustman BA  Morse DE  Evans JS 《Biopolymers》2004,74(5):363-376
The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth.  相似文献   

3.
4.
The constitutive photomorphogenic 1 (COP1) protein of Arabidopsis functions as a molecular switch for the seedling developmental fates: photomorphogenesis under light conditions and skotomorphogenesis in darkness. The COP1 protein contains a cysteine-rich zinc-binding RING finger motif found in diverse groups of regulatory proteins. To understand the role of the COP1 RING finger in mediating protein-protein interaction, we have performed a yeast two-hybrid screen and isolated a novel protein with a RING-H2 motif, a variant type of the RING finger. This protein, designated COP1 Interacting Protein 8 (CIP8), is encoded by a single copy gene and localized to cytosol in a transient assay. In addition to the RING-H2 motif, the predicted protein has a C4 zinc finger, an acidic region, a glycine-rich cluster, and a serine-rich cluster. The COP1 RING finger and the CIP8 RING-H2 domains are sufficient for their interaction with each other both in vitro and in yeast, whereas neither motif displayed significant self-association. Moreover, site-directed mutagenesis studies demonstrated that the expected zinc-binding ligands of the RING finger and RING-H2 fingers are essential for their interaction. Our findings indicate that the RING finger motif, in this case, serves as autonomous protein-protein interaction domain. The allele specific effect of cop1 mutations on the CIP8 protein accumulation in seedlings indicates that its stability in vivo is dependent on the COP1 protein.  相似文献   

5.
Acute promyelocytic leukaemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and the retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex (termed ND10, Kr bodies, nuclear bodies, PML oncogenic domains or PODs) which is disrupted in the APL disease state. PML contains a number of characterized motifs including a Zn2+ binding domain called the RING or C3HC4 finger. Here we describe the solution structure of the PML RING finger as solved by 1H NMR methods at physiological pH with r.m.s. deviations for backbone atoms of 0.88 and 1.39 A for all atoms. Additional biophysical studies including CD and optical spectroscopy, show that the PML RING finger requires Zn2+ for autonomous folding and that cysteines are used in metal ligation. A comparison of the structure with the previously solved equine herpes virus IE110 RING finger, shows significant differences suggesting that the RING motif is structurally diverse. The role of the RING domain in PML nuclear body formation was tested in vivo, by using site-directed mutagenesis and immunofluorescence on transiently transfected NIH 3T3 cells. Independently mutating two pairs of cysteines in each of the Zn2+ binding sites prevents PML nuclear body formation, suggesting that a fully folded RING domain is necessary for this process. These results suggest that the PML RING domain is probably involved in protein-protein interactions, a feature which may be common to other RING finger domains.  相似文献   

6.
In the nacre layer of the mollusk, proteins play an important role in regulating the morphology and lattice structure of calcium carbonate minerals. However, this process remains elusive due to the fact that we do not understand how protein sequences control the structure and morphology of biominerals. To take us a step further in this direction, we report the molecular structure of a 30 AA N-terminal mineral interactive sequence (n16N) of the aragonite-promoting protein, n16, and contrast these findings to those previously reported for two "calcite-blocker" nacre-associated sequences, AP7N and AP24N. We find that n16N is conformationally labile and adopts a random-coil conformation that possesses short, dispersed extended beta-strand segments that are located at the A1-Y2, K5-Y9, Y11-I14, and D21-N25 sequence blocks. Like AP7N and AP24N, Ca(II) ion interactions with n16N alter chain dynamics and local structure, and n16N is adsorbed onto calcite crystals and cannot easily be displaced via differential washing techniques. Furthermore, all three sequences have planar surface regions that could serve as putative sites for mineral interactions or ion cluster formation. However, what sets n16N apart from AP7N and AP24N are different folding propensities as well as unique molecular surface features and amino acid composition. n16N has a more condensed structure that, in the presence of TFE, folds into a beta-strand. This contrasts with the more open structures of AP7N and AP24N that are induced by TFE to fold into alpha-helices. Mapping of the n16N molecular surface reveals significant cationic regions and diffuse anionic charge, which contrasts with the small anionic "pocket" regions of AP7N/AP24N. Finally, n16N has 50% fewer sites for mineral surface- or ion cluster-associated water interactions compared to AP7N and AP24N. Overall, the structure of n16N is "tuned" to a different function within the in vitro mineralization scheme. The different features found in AP7N, AP24N, and n16N could be exploited for engineering polypeptides that recognize and bind to different surface features of inorganic crystalline solids.  相似文献   

7.
AP7 and AP24 are mollusk shell proteins which are responsible for aragonite polymorph formation and stabilization within the nacre layer of the Pacific red abalone, Haliotis rufescens. It is known that the 30-AA N-terminal mineral modification domains of both proteins (AP7N, AP24N) possess identical multifunctional mineralization capabilities within in vitro assays but differ in terms of rate kinetics, with AP24N > AP7N. In this report, we identify previously unreported molecular features of AP24N and contrast the lowest energy polypeptide backbone structures of AP24N (planar configuration) with that of AP7N ("bent paper clip" configuration) using NMR data and simulated annealing molecular dynamics structure refinement. Like AP7N, we find that AP24N possesses an unfolded conformation, can sequester Ca(II) and other multivalent metal ions, can adsorb onto or within calcite crystals, and possesses anionic and cationic electrostatic "pocket" regions on its molecular surfaces. However, AP24N has some unique features: greater conformational responsiveness to Ca(II), the tendency to form a more planar backbone configuration, and longer anionic and hydrogen-bonding donor/acceptor sequence blocks. We conclude that the presence of unfolded polypeptide conformation, electrostatic surface pockets, and interactive sequence clustering endow both AP7N and AP24N with similar features that lead to comparable effects on crystal morphology and nucleation. However, AP24N possesses longer anionic and hydrogen-bonding sequence clusters and exhibits a tendency to adopt a more planar backbone configuration than AP7N does. We believe that these features facilitate peptide-mineral, peptide-ion, or water cluster interactions, thereby enhancing the mineralization kinetics of AP24N over AP7N.  相似文献   

8.
The tumor necrosis factor receptor-associated factor (TRAF) protein family members are critically involved in activation of NF-kappaB, JNK, and p38 activation triggered by tumor necrosis factor (TNF) receptor family members and toll/interleukin-1 receptor (TIR)-containing receptors. TRAF proteins (except for TRAF1) contain an N-terminal RING finger domain that is essential for their functions. In this report, we identified a protein designated as TRAF7, which contains a RING finger domain and a zinc finger domain that are mostly conserved with those of TRAFs. TRAF7 also contains seven WD40 repeats at its C terminus. TRAF7 specifically interacted with MEKK3 and potentiated MEKK3-mediated AP1 and CHOP activation. Depletion of TRAF7 by antisense RNA inhibited MEKK3-mediated AP1 and CHOP activation. Moreover, overexpression of TRAF7 induced caspase-dependent apoptosis. Domain mapping experiments indicated that TRAF7 potentiated MEKK3-mediated AP1 and CHOP activation and induced apoptosis through distinct domains. Our studies identified a novel TRAF family member that is involved in MEKK3 signaling and apoptosis.  相似文献   

9.
The RING finger domain occurs in a wide variety of proteins involved in cellular regulation. The polymerase chain reaction was used to search for novel RING finger proteins, using primers derived from expressed sequence tags (ests). A cDNA encoding a novel RING finger protein expressed in brain, lung, breast, placenta, kidney, muscle, and germinal center B cells is described. The human gene is expressed in a variety of tumors, including anaplastic oligodendroglioma and maps to chromosome 10q24.3, a region showing frequent deletion or loss of heterozygosity in glioblastomas. It was therefore designated glioblastoma expressed RING finger protein (GERP). GERP contains an N-terminal RING finger, followed by two B-boxes and a coiled-coil, and thus belongs to the RBCC subfamily of RING finger proteins. The structure of this protein and its mapping to a locus thought to harbor tumor suppressor genes indicates that it may be a new tumor suppressor gene important in gliomas and other malignancies.  相似文献   

10.
11.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

12.
13.
14.
Tumor necrosis factor (TNF) receptor-associated factor 7 (TRAF7) is one of several adaptor proteins that are critically involved in the activation of TLR-dependent NF-κB signaling. In this report, the first mollusk TRAF7 (designated ChTRAF7) homolog was isolated from Crassostrea hongkongensis by screening a suppression subtractive library. The full-length cDNA, 2290 bp in length, encodes a putative protein of 686 amino acids that contains a RING finger domain, an adjacent zinc finger domain, and seven WD40 repeats. ChTRAF7 is ubiquitously expressed in various tissues including digestive gland, mantle, gill, heart, hemocytes, muscle, and gonads, with the highest expression observed in gonads. Temporal expression of ChTRAF7 following bacterial infection shows that expression of ChTRAF7 in hemocytes decreases from 2 to 12 h post-challenge, and then recovered to the original level after 24 h. These results indicate that ChTRAF7 may play an important role in signal transduction in the immune response of oysters.  相似文献   

15.
Cassava (Manihot esculenta Crantz) is one of the world’s most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5′ and 3′ RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.  相似文献   

16.
17.
The RING finger protein RAD5 interacts and cooperates with the UBC13-MMS2 ubiquitin-conjugating enzyme in postreplication DNA damage repair in yeast. Previous observations implied that the function of UBC13 and MMS2 is dependent on the presence of RAD5, suggesting that the RING finger protein might act as a ubiquitin-protein ligase specific for the UBC13-MMS2 complex. In support of this notion it is shown here that the contact surfaces between the RAD5 RING domain and UBC13 correspond to those found in other pairs of ubiquitin-conjugating enzymes and ubiquitin-protein ligases. Mutations that compromise the protein-protein interactions either between the RING domain and UBC13 or within the UBC13-MMS2 dimer were found to have variable effects on repair activity in vivo that strongly depended on the expression levels of the corresponding mutants. Quantitative analysis of the affinity and kinetics of the UBC13-MMS2 interaction suggests a highly dynamic association model in which compromised mutual interactions result in phenotypic effects only under conditions where protein levels become limiting. Finally, this study demonstrates that beyond its cooperation with the UBC13-MMS2 dimer, RAD5 must have an additional role in DNA damage repair independent of its RING finger domain.  相似文献   

18.
Genetic alterations of RING finger genes, encoding an ubiquitin-protein ligase, are implicated in several types of human cancer through dysregulation of growth regulators. Here, a novel RING finger gene, RNF26, was cloned and characterized. The RNF26 gene on human chromosome 11q23 region was found to encode a polypeptide of 433 amino acids with the N-terminal leucine zipper domain and the C-terminal RING finger domain. Among the RING finger protein family, RING finger domains of RNF26, CGR19, NEURL, KIAA0554, and AK022937 were found to constitute a novel C3HC5 subfamily, which is distinct from C3H2C3 or C3HC4 subfamilies. RING finger domain of RNF26 was most homologous to that of CGR19 (49% amino-acid identity). The 3.2-kb RNF26 mRNA was expressed ubiquitously in normal human tissues, but was upregulated in several human cancer cell lines, including HL-60 (promyelocytic leukemia), HeLa S3 (cervical uterus cancer), SW480 (colorectal cancer), and MKN7 (gastric cancer). In addition, RNF26 was upregulated in 50% of primary gastric cancer examined in this study. Although substrates of ubiquitination mediated by RNF26 remain to be elucidated, RNF26 upregulation in several types of human cancer might be implicated in carcinogenesis through dysregulation of its substrates.  相似文献   

19.
We recently reported the identification of a RING finger-containing protein, HHARI (human homologue of Drosophila ariadne), which binds to the human ubiquitin-conjugating enzyme UbcH7 in vitro. We now demonstrate that HHARI interacts and co-localizes with UbcH7 in mammalian cells, particularly in the perinuclear region. We have further defined a minimal interaction region of HHARI comprising residues 186-254, identified individual amino acid residues essential for the interaction, and determined that the distance between the RING1 finger and IBR (in between RING fingers) domains is critical to maintaining binding. We have also established that the RING1 finger of HHARI cannot be substituted for by the highly homologous RING finger domains of either of the ubiquitin-protein ligase components c-CBL or Parkin, despite their similarity in structure and their independent capabilities to bind UbcH7. Furthermore, mutation of the RING1 finger domain of HHARI from a RING-HC to a RING-H2 type abolishes interaction with UbcH7. These studies demonstrate that very subtle changes to the domains that regulate recognition between highly conserved components of the ubiquitin pathway can dramatically affect their ability to interact.  相似文献   

20.
Many genes in different organisms encode proteins with really interesting gene (RING) finger domain(s). The RING zinc finger domain is involved in a wide variety of functions in diverse organisms. A cDNA clone showing homology with RING zinc finger genes and nine-fold induction in response to cold was previously identified during a gene expression study in the interfertile Citrus relative Poncirus trifoliata (L.) Raf. In this study, the full-length cDNA of this clone was isolated from 2-day cold-acclimated P. trifoliata by a rapid amplification of cDNA ends method using gene-specific primers. The full-length cDNA was 956 bp containing a complete open reading frame of 474 bp encoding a polypeptide of 158 amino acids. The full-length cDNA showed a high level of homology with genes encoding putative RING zinc finger proteins in plants. The deduced amino acid sequence of this gene contained a signature sequence motif for a RING zinc finger close to the C terminus of the protein. The RING zinc finger domain was significantly similar to previously characterized RING zinc finger proteins from different organisms. Additionally, it had a histidine residue at the fifth co-ordination site, indicating that this gene encodes a RING-H2 finger protein. Northern blot hybridization showed that the expression of the RING finger gene was induced in response to cold in cold-hardy P. trifoliata but not to the same extent in cold-sensitive Citrus grandis L. Osb. (pummelo). However, the gene was induced by drought stress similarly in both the species. To our knowledge, this study presents the first isolation of the full-length sequence of a RING zinc finger gene induced in response to abiotic stress in plants and the initial characterization of this gene in Citrus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号