共查询到20条相似文献,搜索用时 0 毫秒
1.
Saneal Rajanahally Julio E Agno Roopa L Nalam Michael B Weinstein Kate L Loveland Martin M Matzuk Qinglei Li 《Reproductive biology and endocrinology : RB&E》2010,8(1):69
Background
Inhibin is a tumor-suppressor and activin antagonist. Inhibin-deficient mice develop gonadal tumors and a cachexia wasting syndrome due to enhanced activin signaling. Because activins signal through SMAD2 and SMAD3 in vitro and loss of SMAD3 attenuates ovarian tumor development in inhibin-deficient females, we sought to determine the role of SMAD2 in the development of ovarian tumors originating from the granulosa cell lineage. 相似文献2.
Siddhartha Kumar Mishra Ju-Hee Kang Chang Woo Lee Seung Hyun Oh Jun Sun Ryu Yun Soo Bae Hwan Mook Kim 《Molecules and cells》2013,36(3):219-226
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. 相似文献
3.
Zhoushuai Qin Wandong Jiang Guifen Wang Ying Sun Wei Xiao 《Apoptosis : an international journal on programmed cell death》2018,23(1):16-26
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent. 相似文献
4.
M Hegde SS Karki E Thomas S Kumar K Panjamurthy SR Ranganatha KS Rangappa B Choudhary SC Raghavan 《PloS one》2012,7(9):e43632
Background
Levamisole, an imidazo(2,1-b)thiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4′-fluorophenyl)-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole).Materials and Methods
ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo.Results
We have determined the IC50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC50 5 µM). Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses) in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models.Conclusion
Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent. 相似文献5.
Fei Yan Lantu Gou Jinliang Yang Lijuan Chen Aiping TongMinghai Tang Zhu YuanShaohua Yao Peng ZhangYuquan Wei 《Biochimie》2009
The gene PNAS4 is a high conservative gene that shares high homology of sequence in various organisms from plants to animals. We found overexpression of human PNAS4 induced apoptosis and arrested cell cycle in S phase in A549 human lung adenocarcinoma cells. In C57BL/6 mice model of Lewis lung carcinoma, overexpression of mouse PNAS4 significantly suppressed tumor growth and prolonged survival time through induction of tumor cell apoptosis, exhibiting effective antitumor. Our original investigations in vitro and vivo indicated PNAS4 is a novel pro-apoptosis gene, which could be used as a potential target of cancer biotherapy in future. 相似文献
6.
Ursolic acid (UA) is a pentacyclic triterpene naturally occurring in many plant foods. In the present study, we investigated anti-cancer activity of UA in vivo in Ehrlich ascites carcinoma (EAC) tumor. 15 × 106 EAC cells were implanted intraperitoneally (i.p., ascitic tumor) and subcutaneous (s.c., solid tumor) in Swiss albino mice. Mice with established tumors received UA i.p. at 25, 50 and 100 mg/kg bw for 14 d in ascitic and 100 mg/kg bw in solid tumor for 30 d. On day 15, blood samples were collected for hematological assessment of hemoglobin (Hb%), RBCs, WBCs and PCV. Tumor volume, cell viability, angiogenic, anti-angiogenic, anti-inflammatory factors and antioxidant parameters were determined. Immunohistochemistry analysis for VEGF, iNOS, CD31, caspase-3 and Bax were also performed. UA significantly inhibited tumor growth, cell viability, in both ascites and solid tumor model in vivo (p < 0·001). The anti-angiogenic effects were accompanied with decreased VEGF, iNOS, TNF-α and increased IL-12 levels. UA at 100 mg/kg bw dose significantly increased SOD and CAT activity (p < 0.01). GSH and TBARS were increased as compared to control group (p < 0.001). Furthermore, UA increased total RBCs, WBCs as well as Hb% significantly (p < 0.05) compared to cyclophosphamide (CP). Histopathological examination of tumor cells in the treated group demonstrated signs of apoptosis with chromatin condensation and cell shrinkage. Decreased peritoneal angiogenesis showed the anti-angiogenic potential. UA downregulated VEGF & iNOS expression whereas bax and caspase-3 expressions were upregulated suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3 and downregulation of VEGF. The present study sheds light on the potent antitumor property of the UA and can be extended further to develop therapeutic protocols for treatment of cancer. 相似文献
7.
ABSTRACT: BACKGROUND: The loss of tumor suppressor gene (TSG) function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. METHOD: Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB/c nude mice model significantly inhibited the tumor growth rate in vivo as compared to that in the control. CONCLUSION: Our study demonstrates that RBM5 can inhibit the growth of lung cancer cells and induce apoptosis both in vitro and in vivo, which suggests that RBM5 might be used as a potential biomarker or target for lung cancer diagnosis and chemotherapy. Moreover, we propose a novel animal model set up in BALB/c nude mice treated with attenuated Salmonella as a vector carrying plasmids to determine RBM5 function in vivo. 相似文献
8.
Buonanno F Quassinti L Bramucci M Amantini C Lucciarini R Santoni G Iio H Ortenzi C 《Chemico-biological interactions》2008,176(2-3):151-164
Climacostol (5-(Z)-non-2-enyl-benzene-1,3-diol) is a natural toxin isolated from the freshwater ciliated protozoan Climacostomum virens and belongs to the group of resorcinolic lipids, compounds that show antimicrobial, antiparasitic and antitumor activities. We investigated the cytotoxic activity of the chemically synthesized toxin on: (1) human tumor squamous carcinoma A431 cells, (2) human promyelocytic leukaemia HL60 cells, and (3) human non-tumor endothelial EA.hy926 cells. The results showed that climacostol effectively inhibited the growth of tumor cell lines in a dose-dependent manner by inducing programmed cell death, with non-tumor cells proving significantly more resistant to the toxin. 相似文献
9.
10.
Iavicoli I Carelli G Sgambato A Masci O Ardito R Cittadini A Castellino N 《Alternatives to laboratory animals : ATLA》2001,29(4):461-469
The effects on normal rat fibroblasts of lead supplementation (as lead acetate) in the medium were examined. The amount of lead acetate ranged from 0.078 microM to 320 microM, at 14 concentrations. The normal level of lead in the medium was 0.060 microM, and the normal concentration of lead in the fibroblasts was 3.1 +/- 0.1 ng/10(7) cells: these represented the control conditions. On studying fibroblast proliferation and survival after incubation for 48 hours, a lead acetate dose-dependent inhibition of cell proliferation was observed, the results being shown to be significant by ANOVA (p < 0.01), and suggesting a significant dose-response relationship. Apoptosis, evaluated by quantifying cytoplasmic DNA fragments, differs significantly between the lead levels tested. The distribution in the cell cycle, evaluated by using a fluorescence-activated cell sorter, showed a dose-dependent accumulation of cells in the G0/G1 phase, with a compensatory decrease in the percentage of cells in the S phase. Moreover, the occurrence of a subdiploid peak confirmed that apoptosis was more evident when the medium was supplemented with lead acetate at concentrations of 5-20 microM. The inhibition of cell growth is probably due to a direct inhibition of cell proliferation. 相似文献
11.
Angiogenesis is crucial to tumor growth and metastasis, and interruption of this process is a prime avenue for therapeutic intervention of tumor proliferation. The present study has made use of the S180 tumor-bearing mouse model to investigate the polysaccharopeptide, PSP, isolated from the edible mushroom Coriolus versicolor, a herbal medicine known for its anti-angiogenesis properties. Quantitative analysis of microcorrosion casting of the tumor tissue showed more angiogenic features such as dense sinusoids and hot spots, in control (untreated) than in PSP-treated animals. Immunostaining of tumor tissues with antibody against the endothelial cell marker (Factor VIII) demonstrated a positive correlation in that both the vascular density and tumor weight were lower in mice treated with PSP. Morphometric analysis of corrosion casts revealed that, even though the total amount of new vessel production was reduced, the basic tumor type-specific vascular architecture was retained. However, the expression of vascular endothelial cell growth factor (VEGF) in these tumors was suppressed. In conclusion, anti-angiogenesis should be one of the pathways through which PSP mediated its anti-tumor activity. 相似文献
12.
Aslam MN Bergin I Naik M Hampton A Allen R Kunkel SL Rush H Varani J 《Biological trace element research》2012,147(1-3):267-274
C57BL/6 mice were maintained for up to 18 months on high-fat and low-fat diets with or without a multi-mineral supplement derived from the skeletal remains of the red marine algae Lithothamnion calcareum. Numerous grossly observable liver masses were visible in animals on the "western-style" high-fat diet sacrificed at 12 and 18 months. The majority of the masses were in male mice (20 out of 100 males versus 3 out of 100 females; p = 0.0002). There were more liver masses in animals on the high-fat diet than on the low-fat diet (15 out of 50 on high-fat versus 5 out of 50 on low-fat; p = 0.0254). The multi-mineral supplement reduced the number of liver masses in mice on both diets (3 out of 25 male mice in the low-fat diet group without the supplement versus 1 out of 25 mice with supplement; 12 of 25 male mice in the high-fat diet group without the supplement versus 3 of 25 mice with supplement [p = 0.0129]). Histological evaluation revealed a total of 17 neoplastic lesions (9 adenomas and 8 hepatocellular carcinomas), and 18 pre-neoplastic lesions. Out of eight hepatocellular carcinomas, seven were found in unsupplemented diet groups. Steatosis was widely observed in livers with and without grossly observable masses, but the multi-mineral supplement had no effect on the incidence of steatosis or its severity. Taken together, these findings suggest that a multi-mineral-rich natural product can protect mice against neoplastic and pre-neoplastic proliferative liver lesions that may develop in the face of steatosis. 相似文献
13.
Danxin Wu Yu ZhangJie Huang Zirong FanFengrong Shi Senming Wang 《Biochemical and biophysical research communications》2014
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC. 相似文献
14.
Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells 总被引:21,自引:0,他引:21
Canstatin, a 24-kDa peptide derived from the C-terminal globular non-collagenous (NC1) domain of the alpha2 chain of type IV collagen, was previously shown to induce apoptosis in cultured endothelial cells and to inhibit angiogenesis in vitro and in vivo. In this report, we demonstrate that canstatin inhibits the phosphorylation of Akt, focal adhesion kinase, mammalian target of rapamycin, eukaryotic initiation factor-4E-binding protein-1, and ribosomal S6 kinase in cultured human umbilical vein endothelial cells. It also induces Fas ligand expression, activates procaspases 8 and 9 cleavage, reduces mitochondrial membrane potential, and increases cell death (as determined by propidium iodide staining). Canstatin-induced activation of procaspases 8 and 9 as well as the induced reduction in mitochondrial membrane potential and cell viability were attenuated by the forced expression of FLICE-inhibitory protein. Canstatin-induced procaspase 8 activation and cell death were also inhibited by a neutralizing anti-Fas antibody. Collectively, these data indicate that canstatin-induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependent upon signaling events transduced through membrane death receptors. 相似文献
15.
Kiss K Kiss J Rudolf E Cervinka M Szeberényi J 《Journal of biochemical and biophysical methods》2004,61(1-2):229-240
16.
《Cell cycle (Georgetown, Tex.)》2013,12(7):1393-1399
Kaposi sarcoma (KS) tumors often contain a wild-type p53. However, the function of this tumor suppressor in KS tumor cells is inhibited by both MDM2 and latent nuclear antigen (LANA) of Kaposi sarcoma-associated herpes virus (KSHV). Here, we report that MDM2 antagonist Nutlin-3 efficiently reactivates p53 in telomerase-immortalized human umbilical vein endothelial cells (TIVE) that had been malignantly transformed by KSHV as well as in KS tumor cells. Reactivation of p53 results in a G1 cell cycle arrest, leading to inhibition of proliferation and apoptosis. Nutlin-3 inhibits the growth of “KS-like” tumors resulting from xenografted TIVE-KSHV cells in nude mice. In addition, Nutlin-3 strongly inhibits expression of the pro-angiogenic and pro-inflammatory cytokine angiopoietin-2 (Ang-2). It also disrupts viral latency by inducing expression of KSHV lytic genes. These results suggest that Nutlin-3 might serve as a novel therapy for KS. 相似文献
17.
Fengchun Ye Ali Abdul Lattif Jianping Xie Aaron Weinberg Shoujiang Gao 《Cell cycle (Georgetown, Tex.)》2012,11(7):1393-1399
Kaposi sarcoma (KS) tumors often contain a wild-type p53. However, the function of this tumor suppressor in KS tumor cells is inhibited by both MDM2 and latent nuclear antigen (LANA) of Kaposi sarcoma-associated herpes virus (KSHV). Here, we report that MDM2 antagonist Nutlin-3 efficiently reactivates p53 in telomerase-immortalized human umbilical vein endothelial cells (TIVE) that had been malignantly transformed by KSHV as well as in KS tumor cells. Reactivation of p53 results in a G1 cell cycle arrest, leading to inhibition of proliferation and apoptosis. Nutlin-3 inhibits the growth of “KS-like” tumors resulting from xenografted TIVE-KSHV cells in nude mice. In addition, Nutlin-3 strongly inhibits expression of the pro-angiogenic and pro-inflammatory cytokine angiopoietin-2 (Ang-2). It also disrupts viral latency by inducing expression of KSHV lytic genes. these results suggest that Nutlin-3 might serve as a novel therapy for KS.Key words: Kaposi sarcoma (KS), nutlin-3, p53, cell cycle arrest, apoptosis, angiopoietin-2 相似文献
18.
Elangovan I Thirugnanam S Chen A Zheng G Bosland MC Kajdacsy-Balla A Gnanasekar M 《Biochemical and biophysical research communications》2012,417(4):1133-1138
Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer. 相似文献
19.
Gu J Liu Y Wen Y Natarajan R Lanting L Nadler JL 《Journal of cellular physiology》2001,186(3):357-365
The 12-lipoxygenase (LO) enzyme has been implicated in playing a role in pancreatic beta cell inflammatory damage and atherosclerosis. 12-LO reacts with fatty acids to form hydroperoxides which may alter cellular growth. In this study we investigated the direct effect of mouse leukocyte type 12-LO cDNA overexpression on apoptosis in Chinese hamster ovary fibroblast cells that also stably overexpress the angiotensin II type 1a receptor. CHO-AT1a cells expressing background levels of 12-LO exhibited clear increases in growth in response to angiotensin II. In contrast, the new 12-LO transfected cells (CHO-AT1a/ML12-LO cells) displayed reduced basal and angiotensin Il-induced growth compared to CHO-AT1a cells. Furthermore, serum-deprivation resulted in a significantly greater number of non-viable cells in clones having the greatest magnitude of 12-LO overexpression. These results suggested that reduction of the proliferation rate of CHO-AT1a/ML12-LO cells was due to an increasing rate of cell death. To determine whether the increase in cell death was due to apoptosis, we evaluated nuclear DNA fragmentation, cell morphologic changes, and activation of caspase-3. Cells overexpressing 12-LO cDNA displayed all these changes characteristic of apoptosis. In addition the 12-LO product, 12-hydroperoxyeicosatetraenoic acid (12-HPETE), directly induced apoptosis in CHO-AT1a cells. These results demonstrate for the first time that 12-LO activation can lead to apoptosis in fibroblasts, suggesting a role of 12-LO in leading to inflammatory mediated cellular damage. 相似文献
20.
Sewing L Steinberg F Schmidt H Göke R 《Apoptosis : an international journal on programmed cell death》2008,13(6):782-789
Besides its preventive action on bone resorption the third generation bisphosphonate zoledronic acid (ZOL) has been shown
to display potent inhibitory action on the formation of bone metastases of various human cancers. Recent research also indicates
an antitumoral effect on primary tumors and visceral metastases. Here we investigate for the first time the effect of ZOL
on the human colon carcinoma cell line HCT-116. ZOL strongly inhibited the proliferation and soft agar colony formation of
HCT-116 cells and caused a G1 cell cycle arrest in a population of ZOL treated cells. This cell cycle arrest was accompanied
by an induction of apoptosis via a caspase dependent mechanism. Activation of Caspases 3, 7, 8 and 9, cleavage of PARP as
well as the release of cytochrome C into the cytosol were detected in HCT-116 cells treated with low micromolar concentrations
of ZOL. The induction of the mitochondrial pathway of apoptosis was accompanied by a translocation of Bax into the mitochondria,
Bid activation and a decrease of overall Bcl-2 expression. We also detected a cytosolic increase of apoptosis inducing factor
(AIF), a trigger of caspase-independent apoptosis. Taken together, our data indicate a potent antitumoral and apoptosis inducing
effect of ZOL on HCT-116 colon carcinoma cells.
Lilian Sewing and Florian Steinberg contributed equally to this work. 相似文献