首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
C3 photosynthesis in silico   总被引:1,自引:0,他引:1  
A computer model comprising light reactions, electron–proton transport, enzymatic reactions, and regulatory functions of C3 photosynthesis has been developed as a system of differential budget equations for intermediate compounds. The emphasis is on electron transport through PSII and PSI and on the modeling of Chl fluorescence and 810 nm absorptance signals. Non-photochemical quenching of PSII excitation is controlled by lumenal pH. Alternative electron transport is modeled as the Mehler type O2 reduction plus the malate-oxaloacetate shuttle based on the chloroplast malate dehydrogenase. Carbon reduction enzymes are redox-controlled by the ferredoxin–thioredoxin system, sucrose synthesis is controlled by the fructose 2,6-bisphosphate inhibition of cytosolic FBPase, and starch synthesis is controlled by ADP-glucose pyrophosphorylase. Photorespiratory glycolate pathway is included in an integrated way, sufficient to reproduce steady-state rates of photorespiration. Rate-equations are designed on principles of multisubstrate-multiproduct enzyme kinetics. The parameters of the model were adopted from literature or were estimated from fitting the photosynthetic rate and pool sizes to experimental data. The model provided good simulations for steady-state photosynthesis, Chl fluorescence, and 810 nm transmittance signals under varying light, CO2 and O2 concentrations, as well as for the transients of post-illumination CO2 uptake, Chl fluorescence induction and the 810 nm signal. The modeling shows that the present understanding of photosynthesis incorporated in the model is basically correct, but still insufficient to reproduce the dark-light induction of photosynthesis, the time kinetics of non-photochemical quenching, ‘photosynthetic control’ of plastoquinone oxidation, cyclic electron flow around PSI, oscillations in photosynthesis. The model may find application for predicting the results of gene transformations, the analysis of kinetic experimental data, the training of students.  相似文献   

2.
The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.Abbreviations and symbols JC electron-transport rate calculated from CO2-assimilation measurements - JF electron-transport rate calculated from fluorescence parameters - PFD photon-flux density - qE energy-dependent quenching - PSII photosystem II - qQ Q-dependent quenching - QY quantum yield - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) C.I.W. publication No. 1015  相似文献   

3.
Photosynthetic activities and the redox states of photosystem I (PSI) and photosystem II (PSII) in intact leaves of cucumber plants (Cucumis sativus L.), as well as the sucrose and starch contents were examined under conditions of ongoing soil water deficit imposed by the cessation of watering. As the soil drought progressed, the maximum rate of photosynthetic CO2 fixation was shown to decrease. These changes in the maximum photosynthetic rate occurred synchronously with changes in the maximum quantum yield of photosynthesis. Under soil water deficit, the reduced form of PSII primary acceptor Q A was accumulated only at photon flux densities of about 100 mol/(m2 s). At such photon flux densities, the changes in nonphotochemical quenching (qN) induced by soil water deficit were opposite to changes in photochemical quenching parameter (1 – qP). Irrespective of the duration of soil drought, the relationship between steady-state concentrations of photochemically inactive reaction centers of PSI and PSII (the fractions of P700 and Q A in the oxidized and reduced state, respectively) was almost linear, which provides evidence for the concerted operation of both photosystems. The conditions of soil water deficit promoted sucrose accumulation in the source leaf, which was paralleled by a substantial decrease in the amount of starch in the same leaf. The highest content of sucrose in the leaf after a 7-day drought was correlated with the largest decrease in photosynthetic activity. It is concluded that the progressive drought triggers an endogenous mechanism that regulates photosynthesis through feedback relations, namely, the inhibition of photosynthesis by its end products.  相似文献   

4.
The long-term effects of exogenous sucrose (3 percnt;) on growth, photosynthesis and carbon metabolism ofin vitro tomato plantlets were investigated under two sets of growth conditions that respectively favor source- or sink-limitations of photosynthesis: 1) low photosynthetic photon flux (PPF) (50 μmol m−2 · s−1) and low CO2 concentration (400 μmol mol−1) and 2) high PPF (500 μmol m−2 · s−1 and high CO2 concentration (4000 μmol mol−1). The supply of sucrose under source-limitation conditions increased the growth, the maximal photosynthetic rate, the chl content, the maximal quantum yield of Photosystem II estimated by the Fv/Fm chl fluorescence ratio as well as the soluble sugars (hexoses, sucrose) and starch contents in roots, young and mature leaves when compared to those of photo-autotrophic plantlets. Also, sucrose feeding under these conditions strongly increased the activity of sucrose synthase (SS) (EC 2.4.1.13) in roots and young leaves whereas the activities of sucrose phosphate synthase (SPS) (EC 2.4.1.14), acid invertase (INV) (EC 3.2.1.26) and ADP-glucose pyrophosphorylase (ADPGppase) (EC 2.7.7.27) were highly stimulated in roots and mature leaves. Contrary to these observations, the supply of sucrose to plantlets developed under high PPF and CO2 concentration decreased growth and led to a somewhat lower maximal photosynthetic rate relative to photo-autotrophic plantlets. These negative responses to exogenous sucrose were accompanied by stronger accumulations of hexose and starch, larger stimulation of INV in mature leaves developed under conditions of sink limitation than those from source limitation conditions. Moreover, under high PPF and high CO2 concentration, exogenous sucrose led to a marked repression of the SPS activity and caused much lower stimulations of ADPGppase in mature leaves than those observed at low PPF and low CO2 concentration. We therefore conclude that under our experimental conditions, the interactive effects of exogenous sucrose and environmental conditions on growth and photosynthesis could be rationalized by the source-sink equilibrium of thein vitro tomato plantlets.  相似文献   

5.
The patterns of cellular metabolites related to redox status and sucrose biosynthesis in mesophyll protoplasts of pea (Pisum sativum L.) were examined in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM) (inhibitor of alternative pathway). The increase on illumination in the rate of photosynthesis or cellular metabolites was more at optimal CO2 (1.0 mM NaHCO3) compared to that at limiting CO2 (0.1 mM NaHCO3). Furthermore, the inhibition of photosynthesis in presence of mitochondrial inhibitors was more pronounced at optimal CO2 than that at limiting CO2. There was a marked increase in steady-state levels of triose-P/PGA (phosphoglyceric acid) and glucose-6-phosphate (Glc-6-P) in the presence of oligomycin and antimycin A. In contrast, SHAM caused a marked increase in malate/OAA (oxaloacetate). We suggest that dissipation of excess redox equivalents generated in photosynthesis occurs through both cytochrome and alternative pathways, while sucrose biosynthesis is backed up by cytochrome pathway alone. Thus, mitochondrial respiration (through both cytochrome and alternative pathways of mitochondrial electron transport) optimizes chloroplast photosynthesis by modulating cellular metabolites related to both intracellular redox state and sucrose biosynthesis.  相似文献   

6.
Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (F v/F m), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism.  相似文献   

7.
Rate of photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were determined in pods (siliqua), whereas rate of dark CO2 fixation, oil content and activities of enzymes involved in dark CO2 metabolism were measured in seeds ofBrassica campestris L. cv. Toria at different stages of pod/seed development. The period between 14 and 35 days after anthesis corresponded to active phase of seed development during which period, seed dry weight and oil content increased sharply. Rate of pod photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were maximum in younger pods but sufficiently high levels were retained up to 40 days after anthesis. The rate of dark14CO2 fixation in seeds increased up to 21 days after anthesis and declined thereafter but maintaining sufficiently high rates till 35 days after anthesis. Similarly various enzymes viz., phosphoenolpyruvate carboxylase, NAD+-malate dehydrogenase and NADP+-malic enzyme, involved in dark CO2 metabolism retained sufficient activities during the above period. These enzyme activities were more than adequate to maintain the desired supply of malate which mainly arises from dark CO2 fixation in seeds and further translocated to leucoplasts for onward synthesis of fatty acids. Enzyme localization experiments revealed phosphoenolpyruvate carboxylase and enzymes of sucrose metabolism to be present only in cytosol, whereas enzymes of glycolysis were present both in cytosolic and leucoplastic fractions. These results indicated that oil synthesis in developingBrassica seeds is supported by pod photosynthesis and dark CO2 fixation in seeds as the former serves as the source of sucrose and the latter as a source of malate  相似文献   

8.
Manfred Kluge 《Planta》1969,88(2):113-129
Summary Detached phyllodia ofBryophyllum tubiflorum were fed under illumination with14CO2 at different times during the light/dark period (12:12 hours). After photosynthesis in presence of14CO2 during the intrinsic dark period the greatest part of soluble radioactivity was found in malate. When the same experiment was repeated during the light period, radioactivity was incorporated mainly into sucrose in the first hours while malate was labelled rather weakly. In the late afternoon (last third of the light period), malate became most heavily labelled again during photosynthesis with14CO2.Our results indicate that the synthesis of malate by PEP-carboxylase/malate dehydrogenase is inhibited at certain times during the night/day period by end product inhibition of PEP-carboxylase, as was demonstrated byQueiroz (1967, 1968) andTing (1968) in vitro.During inhibition of the PEP-carboxylase there is no competition between the synthesis of malate and CO2-fixation by the Calvin cycle. Thus radioactivity can flow into sucrose via the Calvin cycle during this time. When the malate content of the phyllodia is low, CO2-fixation by PEP-carboxylase is not inhibited. Now this pathway dominates over photosynthesis via the Calvin cycle, for PEP-carboxylase has a higher affinity for CO2 than carboxydismutase. Therefore malate now becomes more labelled than sucrose.  相似文献   

9.
Biochemistry of C3-photosynthesis in high CO2   总被引:3,自引:0,他引:3  
The short-term responses of C3 photosynthesis to high CO2 are described first. Regulation of photosynthesis in the short term is determined by interaction among the capacities of light harvesting, electron transport, ribulose-1, 5-bisphosphate carboxylase (Rubisco) and orthophosphate (Pi) regeneration during starch and sucrose synthesis. Photosynthesis under high CO2 conditions is limited by either electron transport or Pi regeneration capacities, and Rubisco is deactivated to maintain a balance between each step in the photosynthetic pathway. Subsequently, the long-term effects on, photosynthesis are discussed. Long-term CO2 enhancement leads to carbohydrate accumulation. Accumulation of carbohydrates is not associated with a Pi-regeneration limitation on photosynthesis, and this limitation is apparently removed during long-term exposure to high CO2. Enhanced CO2 does not affect Rubisco content and electron transport capacity for a given leaf-nitrogen content. In addition, the deactivated Rubisco immediately after exposure to high CO2 does not recover during the subsequent prolonged exposure. Such evidence may indicate that plants do not necessarily have an ideal acclimation response to high CO2 at the biochemical level.  相似文献   

10.
Abstract. In the first part of this review, I discuss how we can predict the direct short-term effect of enhanced CO2 on photosynthetic rate in C3 terrestrial plants. To do this, I consider: (1) to what extent enhanced CO2 will stimulate or relieve demand on partial processes like carboxylation, light harvesting and electron transport, the Calvin cycle, and end-product synthesis; and (2) the extent to which these various processes actually control the rate of photosynthesis. I conclude that control is usually shared between Rubisco (which responds sensitively to CO2) and other components (which respond less sensitively), and that photosynthesis will be stimulated by 25–75% when the CO2 concentration is doubled from 35 to 70 Pa. This is in good agreement with the published responses. In the next part of the review, I discuss the evidence that most plants undergo a gradual inhibition of photosynthesis during acclimation to enhanced CO2. I argue that this is related to an inadequate demand for carbohydrate in the remainder of the plant. Differences in the long-term response to CO2 may be explained by differences in the sink-source status of plants, depending upon the species, the developmental stage, and the developmental conditions. In the third part of the review, I consider the biochemical mechanisms which are involved in ‘sink’ regulation of photosynthesis. Accumulating carbohydrate could lead to a direct inhibition of photosynthesis, involving mechanical damage by large starch grains or Pi-limitation due to inhibition of sucrose synthesis. I argue that Pi is important in the short-term regulation of partitioning to sucrose and starch, but that its contribution to ‘sink’ regulation has not yet been conclusively demonstrated. Indirect or ‘adaptive’ regulation of photosynthesis is probably more important, involving decreases in amounts of key photosynthetic enzymes, including Rubisco. This decreases the rate of photosynthesis, and potentially would allow resources (e.g. amino acids) to be remobilized from the leaves and reinvested in sink growth to readjust the sink-source balance. In the final part of the review, I argue that similar changes of Rubisco and, possibly, other proteins are probably also involved during acclimation to high CO2.  相似文献   

11.
In Vitis vinifera L. cv. Chardonnay maintained in a greenhouse,the maximum rate of photosynthesis, the measured rates of denovo sucrose and starch synthesis and the total leaf sucroseand starch contents were relatively constant throughout theperiod from April to July although the partitioning of newlyfixed carbon was modified in favour of sucrose synthesis half-waythrough the growing period. In these experimental conditions,no significant differences in these parameters were observedin plants from which the fruit had been removed in comparisonto the controls. In field-grown vines, photosynthesis rose toa maximum in the early morning consistent with the increasein ambient irradiance and then subsequently progressively decreased.This occurred every day. On clear days the mid-morning depressionin the rate of CO2 assimilation was closely linked to decreasein stomatal conductance, but there was no correlation betweenthese parameters on days when the sun was overcast. There wasno correlation between leaf sucrose content and the depressionin photosynthesis. The calculated rate of non-cyclic electronflow did not decline in parallel with the mid-morning depression and the quantum efficiency of photosystem II was constantfor the whole of the period when the CO2 assimilation was decreasing.The mid-morning depression of photosynthetic CO2 assimilationwas related to both stomatal and non-stomatal effects. In neithersituation did it have any measurable feedback effect on theelectron transport rate or on the carbo hydrate contents ofthe leaves. Key words: Vitis vinifera L., source-sink interactions, sucrose, starch, photosynthesis  相似文献   

12.
Transthylakoid proton transport based on Photosystem I-dependent cyclic electron transport has been demonstrated in isolated intact spinach chloroplasts already at very low photon flux densities when the acceptor side of Photosystem I (PS I) was largely closed. It was under strict redox control. In spinach leaves, high intensity flashes given every 50 s on top of far-red, but not on top of red background light decreased the activity of Photosystem II (PS II) in the absence of appreciable linear electron transport even when excitation of PS II by the background light was extremely weak. Downregulation of PS II was a consequence of cyclic electron transport as shown by differences in the redox state of P700 in the absence and the presence of CO2 which drained electrons from the cyclic pathway eliminating control of PS II. In the presence of CO2, cyclic electron transport comes into play only at higher photon flux densities. At H+/e=3 in linear electron transport, it does not appear to contribute much ATP for carbon reduction in C3 plants. Rather, its function is to control the activity of PS II. Control is necessary to prevent excessive reduction of the electron transport chain. This helps to protect the photosynthetic apparatus of leaves against photoinactivation under light stress.  相似文献   

13.
Abstract. The effect of gradually-developing water-stress has been studied in Lupinus albus L., Helianthus annuus L., Vitis vinifera cv. Rosaki and Eucalyptus globulus Labill. Water was withheld and diurnal rhythms were investigated 4–8d later, when the predawn water deficit was more negative than in watered plants, and the stomata closed almost completely early during the photoperiod. The contribution of ‘stomatal’ and ‘non-stomatal’ components to the decrease of photosynthetic rate was investigated by (1) comparing the changes of the rate of photosynthesis in air with the changes of stomatal conductance and (2) measuring photosynthetic capacity in saturating irradiance and 15% CO2. Three species (lupin, eucalyptus and sunflower) showed larger changes of stomatal conductance than photosynthesis in air, and showed little or no decrease of photosynthetic capacity in saturating CO2. Photosynthesis in air also recovered fully overnight after watering the plants in the evening. In grapevines, stomatal conductance and photosynthesis in air changed in parallel, there was a marked decrease of photosynthetic capacity, and photosynthesis and stomatal conductance did not recover overnight after watering water-stressed plants. Relative water content remained above 90% in grapevine. We conclude that non-stomatal components do not play a significant role in lupins, sunflower or eucalyptus, but could in grapevine. The effect of water-stress on partitioning of photosynthate was investigated by measuring the amounts of sucrose and starch in leaves during a diurnal rhythm, and by measuring the partitioning of 14C-carbon dioxide between sucrose and starch. In all four species, starch was depleted in water-stressed leaves but sucrose was maintained at amounts similar to, or higher than, those in watered plants. Partitioning into sucrose was increased in lupins and eucalyptus, and remained unchanged in grapevine and sunflower. It is concluded that water-stressed leaves in all four species maintain high levels of soluble sugars in their leaves, despite having lower rates of field photosynthesis, decreased rates of export, and low amounts of starch in their leaves.  相似文献   

14.
15.
高大气CO2浓度下氮素对小麦叶片光能利用的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
关于氮素对高大气CO2浓度下C3植物光合作用适应现象的调节机理已有较为深入的研究, 但对其光合作用适应现象的光合能量转化和分配机制缺乏系统分析。该文以大气CO2浓度和施氮量为处理手段, 通过测定小麦(Triticum aestivum)抽穗期叶片的光合作用-胞间CO2浓度响应曲线以及荧光动力学参数来测算光合电子传递速率和分配去向, 研究了长期高大气CO2浓度下小麦叶片光合电子传递和分配对施氮量的响应。结果表明, 与正常大气CO2浓度处理相比, 高大气CO2浓度下小麦叶片较多的激发能以热量的形式耗散, 增施氮素可使更多的激发能向光化学反应方向的分配, 降低光合能量的热耗散速率; 大气CO2浓度升高后小麦叶片光化学淬灭系数无明显变化, 高氮叶片的非光化学猝灭降低而低氮叶片明显升高, 施氮促进PSII反应中心的开放比例, 降低光能的热耗散; 高大气CO2浓度下高氮叶片通过PSII反应中心的光合电子传递速率(JF)较高, 而且参与光呼吸的非环式电子流速率(J0)显著降低, 较正常大气CO2浓度处理的高氮叶片下降了88.40%, 光合速率增加46.47%; 高大气CO2浓度下小麦叶片JF-J0升高而J0/JF显著下降, 光呼吸耗能被抑制, 更多的光合电子分配至光合还原过程。因此, 大气CO2浓度增高条件下, 小麦叶片激发能的热耗散速率增加, 但增施氮素后小麦叶片PSII反应中心开放比例提高, 光化学速率增加, 进入PSII反应中心的电子流速率明显升高, 光呼吸作用被抑制, 光合电子较多地进入光化学过程, 这可能是高氮条件下光合作用适应性下调被缓解的一个原因。  相似文献   

16.
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - ASC L-ascorbic acid - APX ascorbate peroxidase - Ce CO2 concentration in air in the measuring cuvette during photosynthesis measurements - Ci CO2 concentration in the leaf intercellular spaces during photosynthesis measurement - Chl chlorophyll - DHA dehydroascorbic acid - DHA reductase dehydroascorbate reductase - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gluc glucose - GR glutathione reductase - Gsw stomatal conductance with units as mmol H2O m-2 s-1 - GSSG oxidized glutathione - GSH reduced glutathione - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6P dehydrogenase glucose-6-phosphate dehydrogenase - 6PG 6-phosphogluconate - 6PG dehydrogenase 6-phosphogluconate dehydrogenase - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - MAL malate - MDHA reductase monodehydroascorbate reductase - PE post-emergence - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - PYR pyruvate - Pn net CO2 photoas-similation in leaves - PPFD photosynthetic photon flux density with units of mol photons m-2 s-1 - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TCA cycle tricarboxylic acid cycle - Triose-P DHAP+GAP  相似文献   

17.
《BBA》2003,1607(1):5-17
Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I≈const.+sin(ωt), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance ω and several upper harmonic components (2ω, 3ω and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO2 assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.  相似文献   

18.
We investigated the individual effect of null mutations of each of the four sucrose‐phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform‐specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO2] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO2] levels. Carbon partitioning at ambient [CO2] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non‐structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5‐bisphosphate regeneration‐limited photosynthesis but not ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco)‐limited photosynthesis, indicating a limitation of triose‐phosphate utilization (TPU).  相似文献   

19.
Sorghum is one of the most important crops providing food and feed in many of the world's harsher environments. Sorghum utilizes the C4 pathway of photosynthesis in which a biochemical carbon-concentrating mechanism results in high CO2 assimilation rates. Overexpressing the Rieske FeS subunit of the Cytochrome b6f complex was previously shown to increase the rate of photosynthetic electron transport and stimulate CO2 assimilation in the model C4 plant Setaria viridis. To test whether productivity of C4 crops could be improved by Rieske overexpression, we created transgenic Sorghum bicolor Tx430 plants with increased Rieske content. The transgenic plants showed no marked changes in abundances of other photosynthetic proteins or chlorophyll content. The steady-state rates of electron transport and CO2 assimilation did not differ between the plants with increased Rieske abundance and control plants, suggesting that Cytochrome b6f is not the only factor limiting electron transport in sorghum at high light and high CO2. However, faster responses of non-photochemical quenching as well as an elevated quantum yield of Photosystem II and an increased CO2 assimilation rate were observed from the plants overexpressing Rieske during the photosynthetic induction, a process of activation of photosynthesis upon the dark–light transition. As a consequence, sorghum with increased Rieske content produced more biomass and grain when grown in glasshouse conditions. Our results indicate that increasing Rieske content has potential to boost productivity of sorghum and other C4 crops by improving the efficiency of light utilization and conversion to biomass through the faster induction of photosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号