首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, were isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline-1-oxide (4NQO); and Q31 cells are cross-sensitive to UV and 4NQO. MMS-, X-ray- and UV-sensitive markers in these mutants behaved recessively in hybrids between pairs of these mutants as in hybrids between L5178Y and these mutants as reported before (Shiomi et al., 1982b). Complementation analyses were carried out by forming hybrids between two MMS-sensitive mutants (MS-1 and M10) and between two 4NQO-sensitive mutants (M10 and Q31). MMS and 4NQO survivals were measured in these hybrid cells. MS-1 and M10 were found to belong to different complementation groups for MMS-sensitive phenotypes. The hybrid clones between M10 and Q31 were as sensitive to 4NQO as each of the mutants, indicating codominance of 4NQO sensitivity in these mutants. The hybrids constructed with L5178Y and three mutants were stable as to their chromosome constitution for 100 days of cultivation without selective pressure. From the segregation studies on these hybrids, it is concluded that neither the X-ray-sensitive mutation in M10 nor the UV-sensitive mutation in Q31 is located on the X chromosome.  相似文献   

2.
The X-ray-sensitive mutant M10 and the UV-sensitive mutant Q31 of mouse lymphoma L5178Y cells are both sensitive to killing by 4-nitroquinoline-1-oxide (4NQO). Since cell hybridization experiments showed that the 4NQO sensitivities in M10 and Q31 cells behaved as codominant traits (Shiomi et al., 1982c), it is not possible to determine by complementation test whether the M10 and the Q31 mutations responsible for 4NQO sensitivities are allelic. We have obviated this difficulty by selecting double mutants that are sensitive to both X-rays and UV. From X-ray-sensitive M10 cells, two UV-sensitive mutants (XU 1 and XU 2) were isolated by a cell-suspension spotting method. XU 1 and XU 2 were found to belong to the same complementation group as Q31 (group I). Double mutants XU 1 and XU 2 were 30-37-fold more sensitive to 4NQO than parental L5178Y cells, whereas the single mutants M10 and Q31 were only 6-8-fold more sensitive to 4NQO than L5178Y cells in terms of D10 values (dose required to reduce survival to 10%). These results show that the M10-Q31-double mutations enhance 4NQO sensitivity synergistically, indicating that the M10 and the Q31 mutations relevant to 4NQO sensitivities are non-allelic. The implications of this finding are discussed.  相似文献   

3.
We have examined the chromosomal radiosensitivities of an ionizing-radiation- and MMS-sensitive mutant (M10), and a UV- and 4NQO-sensitive mutant (Q31), isolated from mouse lymphoma L5178Y cells, with regard to killing effects. In the first mitoses after 100 R γ-irradiations, it was found that M10 cells were highly radiosensitive in terms of chromosomal aberrations accompanying longer mitotic delay (3 h); the frequencies of both chromatid-type and chromosome-type aberrations were, respectively, about 7 and 4 times higher than that of wild-type L5178Y cells. Furthermore, chromatid exchanges, particularly triradials, isochromatid breaks with sister union, and chromatid gaps and breaks were markedly enhanced at G1 phase of M10 cells. In contrast, the chromosomal radiosensitivity of Q31 cells after 100 R irradiation was similar to that of L5178Y cells. On the other hand, spontaneous aberration frequencies (overall breaks per cell) of M10 and Q31 cells were, respectively, 5.1 and 2.2 times higher than that of wild-type L5178Y cells. The chromosomal hypersensitivity to γ-rays in M10 cells is discussed in the light of knowledge obtained from ataxia telangiectasia cells.  相似文献   

4.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

5.
K Sato  N Hieda 《Mutation research》1980,71(2):233-241
The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells.  相似文献   

6.
2 mutant mouse cells M10 and Q31 were examined for chromosomal aberrations induced by ultraviolet radiation (UV) and 4-nitroquinoline-1-oxide (4NQO), as compared with mouse lymphoma L5178Y cells. Q31 cells are UV- and 4NQO-sensitive cells isolated from L5178Y cells. M10 cells are similar but are sensitive to ionizing radiation and 4NQO. After treatment with UV or 4NQO, chromatid-type aberrations in these cell strains were induced more frequently in the first mitotic cells, at late fixation times. After UV exposure (2.4 J/m2), the maximal frequencies of chromatid-type breaks in Q31 cells were about 5 times higher than in L5178Y cells. In M10 cells such breaks were only as frequent as in L5178Y cells. After 4NQO treatment (50 ng/ml) the frequencies of chromatid-type breaks in M10 and Q31 cells were significantly higher than in L5178Y cells. From these results and those of previous studies (Takahashi et al., 1982), M10 cells may be considered hypersensitive to gamma-rays and 4NQO, but not to UV, and thus react similarly to L5178Y cells. The hypersensitivity of M10 cells to 4NQO may result from a defect in the ionizing-radiation repair mechanism as has been suggested to occur in ataxia telangiectasia (AT) cells. Q31 cells are hypersensitive to UV and 4NQO, but not to gamma-rays. Q31 cells may be considered to be deficient in a UV-like repair pathway. In conclusion, characteristics of murine M10 and Q31 cells are compared with those of human AT and xeroderma pigmentosum (XP) cells.  相似文献   

7.
Two strains of L5178Y murine lymphoma, inversely cross-sensitive to X-rays and UV light, were shown previously to respond to treatment with an antitumour platinum complex, cis-dichlorobis(cyclopentylamine)-platinum(II) (cis-PAD), in a similar manner as to UV. Enhancement of chromosomal damage and potentiation of lethal effect of cis-PAD by 0.75 mM caffeine were found in cis-PAD and UV light-resistant L5178Y-S strain but not in cis-PAD and UV light-sensitive L5178Y-R strain. These results suggest that the extreme sensitivity of L5178Y-R strain to cis-PAD and UV light is caused to some extent by deficiency in a caffeine-sensitive post-replication repair system.  相似文献   

8.
A replica-plating technique has been adopted for the isolation of mutagen-sensitive mutants of Chinese hamster V79 and CHO cell lines. After the mutagenic treatment (ENU) clones derived from these cell lines were replica plated into micro wells and replicas were treated with UV (254 nm), X-ray, MMC, EMC or MMS. Clonal cell lines which demonstrated mutagen sensitivity were retested by the determination of survival. Only one UV-sensitive line was obtained in 1500 clonal lines derived from CHO cells. This mutant appeared also sensitive to 4NQO and MMC. The sensitivity to UV and MMC was 2-3-fold enhanced, while the increase in sensitivity to 4NQO was 4-5-fold. In V79 cells 9 mutagen-sensitive lines were found after screening of 500 clonal lines; six of them showed increased sensitivity towards UV, two towards MMC, and one cell line was found to be X-ray sensitive. A considerable cross-sensitivity for the various agents was found among the isolated mutants. When a 2-fold increase is taken as a minimum to indicate mutagen sensitivity 6 mutants were sensitive to UV, 8 mutants were sensitive to MMC, 6 mutants were sensitive to 4NQO and 4 mutants were sensitive to X-rays. The difference in sensitivity to UV versus 4NQO makes it unlikely that 4NQO can be considered as a UV-mimetic agent. The sensitivity to MMC appears to fall into 2 classes: a class with moderate sensitivity (2-8-fold) and a class with high sensitivity (30-100-fold). The presence of similar classes is indicated for UV. Except for the two lines V-E5, V-B7 and the two lines V-H11, V-H4 all obtained mutants have a different spectrum of mutagen sensitivities which suggests that different genetic alterations underly these effects. The observed high frequency of mutagen-sensitive mutants in V79 cells, although unexpected and substantially higher than those published for CHO cells and L5178Y cells, can still be explained by the presence of functionally hemizygous loci.  相似文献   

9.
In a search for cell mutants that show an increase or a decrease in the frequency of baseline sister-chromatid exchanges (SCEs) or spontaneous chromosomal aberrations (CAs), large numbers of mutagen-sensitive clones previously isolated from mouse lymphoma L5178Y cells were analyzed. In addition to two SCE mutants (ES 4 and AC 12) previously reported, three other mutants were identified as an SCE mutant. An ethyl methanesulfonate-sensitive mutant ES 2 and an alkylating agent-sensitive mutant MS 1 exhibited, respectively, 1.4-fold and 1.8-fold higher baseline SCE frequencies than did the parental L5178Y. In contrast, M10, which is sensitive to X-ray and 4-nitroquinoline 1-oxide, showed a reduced frequency of baseline SCEs (0.65-fold). These 5 mutants including ES 4 and AC 12 had 3--9-fold increases in spontaneous CA frequencies. Measurement of baseline SCE formation in inter-mutant hybrids revealed that M10 mutation is dominant, MS 1 and ES 4 mutations are semidominant, and ES 2 and AC 12 mutations are recessive. Because SCE frequencies in hybrids formed between pairs of 4 mutants (ES 2, MS 1, ES 4 and AC 12) were significantly lower than those in the tetraploid mutant cells, these 4 mutants probably belong to different complementation groups. Since M10 behaved dominantly with respect to SCE phenotype, it was not possible to determine by complementation test whether it belongs to a different group from the other mutants. However, the finding that M10 is complemented by other mutants for EMS sensitivity indicates that the M10 mutation is different from the other mutations. From these results, it is concluded that at least 4 different genes participate in the formation of high levels of baseline SCEs. The defects in ES 2, MS 1, ES 4, and AC 12 produce common lesions responsible for the formation of both SCEs and CAs. In contrast, the defect in M10 is associated with a high increase in spontaneous CA frequency, but conversely associated with a decrease in baseline SCE frequency. This suggests that M10 is defective in the process involved in the formation of baseline SCEs.  相似文献   

10.
The response to cis-dichlorobis(cyclopentylamine)platinum(II) (cis-PAD) an antitumour platinum complex, was studied in two strains of murine lymphoma L5178Y cross-sensitive to X-rays and UV light. Dose-survival relationship, DNA synthesis formation of chromatid aberrations, progression through the cell cycle, and growth and viability changes after 1 h cis-PA; treatment at 37 degree C were examined and compared with the effects of X-rays and UV light. In both strains, cis-PAD caused immediate inhibition of progression through the cell cycle, reduced rate of DNA synthesis, delayed appearance of chromatid aberrations, and delayed death; however, there is a marked difference in sensitivity to cis-PAD between L5178Y-S strain (D0 approx. 5.8 microgram/ml) and L5178Y-R strain (D0 approx. 2.5 microgram/ml). In both strains a close resemblance was found between dose-survival relationships after cis-PAD and UV light treatment, respectively.  相似文献   

11.
The amino acid contents of tumor cells that are either sensitive or resistant to treatment with L-asparaginase were measured. These amino acid concentrations were measured as a function of incubation time with L-asparaginase or as a function of the L-asparaginase dose. The cell types compared were the mouse leukemia lines L5178Y (sensitive to L-asparaginase treatment) and L5178Y/L-ASE (resistant to L-asparaginase treatment). Upon L-asparaginase treatment both cell lines lost most of their cellular asparagine but, whereas the resistant cells exhibited the ability to rebound to about 50% of initial values, the sensitive cells did not. While previous work had suggested that asparagine-dependent glycine synthesis was essential for sensitive cells (but not in resistant cells), we found no difference in the glycine content of either of the two cell lines as a function of either time or dose that would support this hypothesis. Major differences between the two cell lines were seen in the content of the essential amino acids before treatment with L-asparaginase. After incubation without L-asparaginase the contents of the two cell lines became similar. These results are discussed in terms of possible mechanisms of L-asparaginase sensitivity and resistance.  相似文献   

12.
K Krell  E D Jacobson  K Selby 《In vitro》1979,15(5):326-328
The mutation frequency of L5178Y mouse lymphoma cells to resistance to 5'-bromo-2'-deoxyuridine increased 6- to 14-fold after growth in ethylene oxide-sterilized polycarbonate culture flasks compared to growth in glass flasks. No comparable increase was observed when L5178Y cells were grown in identical polycarbonate culture flasks sterilized by autoclaving.  相似文献   

13.
Cytotoxic effects of O2- and H2O2 on mammalian cells were investigated in comparison with the relative sensitivity of mouse L5178Y cells and its radiosensitive mutant M10. Both O2- and H2O2 exhibited two different modes of cytotoxic actions depending on their exposure rates: At a high exposure rate (4.3 nmol of O2-/mL/min), M10 was more sensitive to O2- than L5178Y normal type cell, in agreement with the case of X-rays; while at a low exposure rate (five times less than the high exposure rate), M10 became more resistant than L5178Y. Similar results were obtained with H2O2. Reactive species responsible for these two different cytotoxic actions were examined with special reference to the metal-catalyzed Haber-Weiss reaction, by using a metal chelator, 1,10-phenanthroline, and an .OH scavenger, dimethylsulfoxide (DMSO). Significant protection by 1,10-phenanthroline was observed, which indicates the presence of a metal-dependent process in both cytotoxic actions. DMSO showed a marked protective effect, except for the case of M10 exposed at the low exposure rate, in which DMSO showed no protection. The resistance of M10 to O2- and H2O2 observed at the low exposure rate suggests the possibility that reactive species other than .OH are involved in the cytotoxicity.  相似文献   

14.
A mouse-cell mutant sensitive to methyl methanesulfonate (MMS), X-rays, ultraviolet light (UV), and crosslinking agents was selected using the replica plating and cell suspension spotting methods. This mutant (XUM1) is a mitomycin C-sensitive derivative of previously reported XU1, a mutant sensitive to MMS, X-rays and UV. Since XU1 is highly susceptible to the lethal effect of 4-nitroquinoline-1-oxide (4NQO), XUM1 is also hypersensitive to 4NQO. Growth inhibition area tests showed that low concentrations of mutagens were detected with the multiple mutagen-sensitive mutant XUM1. Hence XUM1 cells will be useful in detecting with high sensitivity a wide range of mutagens and carcinogens which mimic X-rays, UV and crosslinking agents.  相似文献   

15.
The alkylating agent MMS was toxic to mouse lymphoma L5178Y cells and decreased their growth rate. A dose-dependent induction of thioguanine- and thymidine- but not ouabain-resistant variants was observed. The prolonged period for expression of thioguanine-resistant variants observed with other mutagens was also found in these studies. A comparison of MMS and EMS showed that MMS on a molar basis was approximately 10 times more toxic than EMS. With mutation, however, when evaluated at equal levels of cell killing MMS and EMS induced the same number of thymidine-resistant variants. For thioguanine-resistant variants MMS was approximately 10-fold less efficient than EMS, while for ouabain-resistance MMS, unlike EMBS, produced no variants at all. The ouabain results were further compared with positive results obtained using a modified Luria--Delbrück fluctuation test.  相似文献   

16.
To better understand the basis for the difference in radiosensitivity between the variant murine leukemic lymphoblast cell lines L5178Y-R (resistant) and L5178Y-S (sensitive), the production and repair of DNA damage after X irradiation were measured by the DNA alkaline and neutral elution techniques. The initial yield of single-strand DNA breaks and the rates of their repair were found to be the same in both cell lines by the DNA alkaline elution technique. Using the technique of neutral DNA elution, L5178Y-S cells exhibited slightly increased double-strand breakage immediately after irradiation, most significantly at lower doses (i.e., less than 10 Gy). Nevertheless, even at doses that yielded equal initial double-strand breakage of both cell lines, the survival of L5178Y-S cells was significantly less than that of L5178Y-R cells. When the technique of neutral DNA elution was employed to measure the kinetics of DNA double-strand break repair, both cell lines exhibited biphasic fast and slow components of repair. However, the double-strand repair rate was much lower in the radiosensitive L5178Y-S cells than in the L5178Y-R cells (T1/2 of 60 vs 16 min). This difference was more pronounced in the fast-repair component. These results suggest that the repair of double-strand DNA breaks is an important factor determining the radiosensitivity of L5178Y cells.  相似文献   

17.
The effects of methylazoxymethanol (MAM) acetate on colony survival, cell proliferation and DNA synthesis of murine lymphoma L5178Y cells are studied. Decreased sensitivity and immediate depression of cell proliferation and DNA synthesis were found in L5178Y cells in contrast to the reports on HeLa cells. Pre-labelling with 5-bromodeoxyuridine (BUdR) did not enhance significantly the carcinogen-induced cell lethality. Post-treatment with caffeine greatly enhanced cell lethality and depression of cell proliferation. These effects of caffeine were diminished when the cells had passed through two generations following the MAM acetate treatment. Experiments with synchronized cells showed that the action of caffeine was located primarily in S phase following the MAM acetate-treatment. These results strongly suggest that in L5178Y cells, MAM acetate induces damage, which is repaired by a mechanism analogous to post-replication repair of UV light-induced damage.  相似文献   

18.
A mutant of the uniformly lethal L5178Y lymphoma, called the L5178Y/Manitoba (L5178Y/M), was rejected after subcutaneous challenge in syngeneic DBA/2 mice. Karyotypic analysis revealed that the parent L5178Y lymphoma had four chromosome markers, with the mutant L5178Y/M sharing one of them as well as possessing two distinguishing markers. One diploid and two hypotetraploid clones were isolated from the L5178Y/M; they contained all the marker chromosomes and were also rejected by the syngeneic host. In addition to the shared chromosome markers, the L5178Y/M possessed antigens in common with the parent L5278Y. DBA/2 mice made immune to the mutant by subcutaneous immunization were able to slow the growth of the parent tumor but not the unrelated P-815-X2 mastocytoma.  相似文献   

19.
Post-irradiation changes in DNA synthesis and ADP-ribosyltransferase (ADPRT) activity in L5178YS and L5178YR, radiation sensitive and resistant murine lymphoma cells are described. DNA synthesis was inhibited to a greater extent in L5178YS than in L5178YR cells. The stimulation of ADPRT activity by irradiation was not significantly different between these two cell lines. These observations contribute to other evidence which has failed to confirm a general association of ADP-ribosylation with the DNA synthesis inhibition response. The contrast between the response of L5178Y cells and the corresponding behaviour of ataxia telangiectasia cells and normal human cells indicate that entirely different mechanisms are involved in determining the differences in radiosensitivity in these two systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号