首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β‐diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long‐term (18‐year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments.  相似文献   

2.
《农业工程》2014,34(2):85-91
Functional diversity, which is the value, variation and distribution of traits in a community assembly, is an important component of biodiversity. Functional diversity is generally viewed as a key to understand ecosystem and community functioning. There are three components of functional diversity, i.e. functional richness, evenness and divergence. Functional diversity and species diversity can be either positively or negatively correlated, or uncorrelated, depending on the environmental conditions and disturbance intensity. Ecosystem functioning includes ecosystem processes, ecosystem properties and ecosystem stability. The diversity hypothesis and the mass ratio hypothesis are the two major hypotheses of explaining the effect of functional diversity on ecosystem functioning, diversity hypothesis reflects that organisms and their functional traits in a assemblage effect on ecosystem functioning by the complementarity of using resources, and mass ratio hypothesis emphasises the identify of the dominant species in a assemblage. These two hypotheses do not contradict each other and instead they reflect the two different sides of functional diversity and functional composition. The effect of functional diversity on ecosystem functioning also depends on abiotic factors, perturbation, management actions, etc. Function diversity potentially influences ecosystem service and management by effecting on ecosystem functioning. Ecosystem management groups should include functional diversity in their scheme and not just species richness.  相似文献   

3.
4.
5.
Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α‐diversity) to macroecological scales (β‐ and γ‐diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB–EF relationships). However, before the outcomes of MB–EF analyses can be useful to real‐world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB–EF mechanisms: “macroecological complementarity” and “spatiotemporal compensation.” Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting‐edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB–EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change.  相似文献   

6.
Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.  相似文献   

7.
The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator–prey interactions (PPI). Research addressing role of biodiversity in ecosystem functioning has focused primarily on single trophic‐level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey interactions has focused on two trophic‐level systems, emphasizing indirect and non‐additive interactions among species. Here, we use a suite of consumer‐resource models to organize and synthesize the ways in which consumer species diversity affects the densities of both resources and consumer species. Specifically, we consider sampling effects, resource partitioning, indirect effects caused by intraguild interactions and non‐additive effects. We show that the relationship between consumer diversity and the density of resources and consumer species are broadly similar for systems with one vs. two trophic levels, and that indirect and non‐additive interactions generally do little more than modify the impacts of diversity established by the sampling effect and resource partitioning. The broad similarities between systems with one vs. two trophic levels argue for greater communication between researchers studying BEF, and researchers studying multispecies PPI.  相似文献   

8.
Assuming that human well-being strongly relies on the services provided by well-functioning ecosystems, changes in the ecological functioning of any system can have direct and indirect effects on human welfare. Intensive land use and tourism have expanded in recent decades along coastal ecosystems, together with increasing demands for water, food and energy; all of these factors intensify the exploitation of natural resources. Many of the interrelations between ecosystem functioning and the provision of ecosystem services (ES) still require quantification in estuarine systems. A conceptual framework to assess such links in a spatially and temporally explicit manner is proposed and applied to the Mondego estuary (Portugal). This framework relies on three consecutive steps and discriminates among biodiversity structural components, ecosystem functioning and stability and the services provided by the ecosystem.Disturbances in abiotic factors were found to have a direct effect on biodiversity, ecosystem functioning and the provision of ES. The observed changes in the species composition of communities had a positive effect on the ecosystem's productivity and stability. Moreover, the observed changes in the estuarine ES provision are likely to arise from changing structural and abiotic factors and in the present case from the loss or decline of locally abundant species. This study also indicates that linear relationships between biodiversity, ecosystem functioning and services provision are unlikely to occur in estuarine systems. Instead, cumulative and complex relations are observed between factors on both temporal and spatial scales. In this context, the results suggest several additional conclusions: (1) biodiversity and ecosystem functioning interaction with human well-being need to be incorporated into decision-making processes aimed at the conservative management of systems; (2) the institutional use of research results must be part of the design and implementation of sustainable management activities; and (3) more integrative tools/studies are required to account for the interactions of estuarine ecosystems with surrounding socio-economic activities. Therefore, when performing integrated assessments of ecosystem dynamics, it becomes essential to consider not only the effects of biodiversity and ecosystem functioning on services provision but also the effects that human well-being and ES provision may have on estuarine biodiversity and ecosystem functioning.The proposed framework implies taking into account both the functional and the commodities points of view upon natural ecosystems and by this representing a line of thought which will deserve further research to explore more in detail the conceptual links between biodiversity–ecosystem functioning–services provided.  相似文献   

9.
Resilience is a general concept that aims to help understand how ecosystems respond to disturbances such as extinctions and invasions. Here, we propose a measure of one aspect of resilience, R X , which is one minus the expected change in functional diversity (X) caused by a species extinction or addition. We show how two components of biodiversity, species richness and functional diversity, and the structure of regional species pools affect this measure. Variation in species richness and in functional diversity have opposite effects on R X . Speciose assemblages generally have higher R X than depauperate ones, whereas functionally diverse assemblages have low R X relative to functionally depauperate ones. The effect of an extinction on R X reflects this tradeoff. In our analyses, extinctions usually cause only a small decrease in both functional diversity and R X . However, extinctions sometimes cause a large reduction in functional diversity and then tend to increase R X . Regional assemblages containing all rather unique species tend to result in speciose assemblages with relatively low R X and in low richness assemblages with relatively high R X . The opposite is true of regional assemblages containing functionally similar species. Information about the processes that structure regional assemblages will therefore increase understanding of ecosystem resilience. Generally, these results suggest that management for biodiversity may not always result in management for resilience.  相似文献   

10.
The monitoring of biodiversity at the level of habitats is becoming widespread in Europe and elsewhere as countries establish national habitat monitoring systems and various organisations initiate regional and local schemes. Parallel to this growth, it is increasingly important to address biodiversity changes on large spatial (e.g. continental) and temporal (e.g. decade-long) scales, which requires the integration of currently ongoing monitoring efforts. Here we review habitat monitoring and develop a framework for integrating data or activities across habitat monitoring schemes. We first identify three basic properties of monitoring activities: spatial aspect (explicitly spatial vs. non-spatial), documentation of spatial variation (field mapping vs. remote sensing) and coverage of habitats (all habitats or specific habitats in an area), and six classes of monitoring schemes based on these properties. Then we explore tasks essential for integrating schemes both within and across the major classes. Finally, we evaluate the need and potential for integration of currently existing schemes by drawing on data collected on European habitat monitoring in the EuMon project. Our results suggest a dire need for integration if we are to measure biodiversity changes across large spatial and temporal scales regarding the 2010 target and beyond. We also make recommendations for an integrated pan-European habitat monitoring scheme. Such a scheme should be based on remote sensing to record changes in land cover and habitat types over large scales, with complementary field mapping using unified methodology to provide ground truthing and to monitor small-scale changes, at least in habitat types of conservation importance.  相似文献   

11.
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.  相似文献   

12.
The assessment of the value of ecosystem services is a valuable tool for biodiversity conservation that can facilitate better environmental policy decision-making and land management, and can help land managers develop interventions to compensate for biodiversity loss at the patch level. Previous studies have suggested that it is appropriate to assess the value of biodiversity for conservation planning by considering both the condition of the landscape and the spatial configuration of adjacent land uses that can be reflected as a proximity effect. This research examines the influence of spatial proximity on biodiversity conservation from the ecosystem service perspective based on the assumption that the variation in the proximity effect caused by land cover change has positive or negative impacts on ecological services. Three factors related to the spatial characteristics of the landscape were considered in this approach: the relative artificiality of the land cover types, the distance decay effect of patches and the impact of one land cover type on others. The proximity effect change (PEC) parameter reflected the relationship between the spatial proximity effect and biodiversity conservation. The results of a quantitative and spatial comparative analysis of the proposed method and the conventional method in Yingkou for the periods of 2000–2005 and 2005–2010 showed that the former can account for the temporal and spatial changes in ecosystem services for biodiversity conservation that were caused by patch-level changes as well as the interaction between the altered and adjacent patches from a spatial perspective. The metric can also identify the most critical areas for biodiversity protection and inform the efficient allocation of limited land resources for nature conservation to maximize the benefit to biodiversity by guiding the process of land-use change, particularly urbanization and agriculture. Future studies should focus on the other important factors that are applicable to the assessment of the value of biodiversity conservation in socio-ecological systems, where society and nature are mutually capable of fulfilling their roles.  相似文献   

13.
Sub‐Antarctic islands represent critical breeding habitats for land‐based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub‐Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; “island mass effect”; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long‐term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long‐term decline in enhanced phytoplankton productivity at the islands in response to a climate‐driven shift in the position of the sub‐Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore‐feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore‐feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.  相似文献   

14.
Greater biodiversity is often associated with increased ecosystem process rates, and is expected to enhance the stability of ecosystem functioning under abiotic stress. However, these relationships might themselves be altered by environmental factors, complicating prediction of the effects of species loss in ecosystems subjected to abiotic stress. In boreal streams, we investigated effects of biodiversity and two abiotic perturbations on three related indices of ecosystem functioning: leaf decomposition, detritivore leaf processing efficiency (LPE) and detritivore growth. Replicate field enclosures containing leaves and detritivore assemblages were exposed to liming and nutrient enrichment, raising pH and nutrient levels. Both treatments constitute perturbations for our naturally acidic and nutrient-poor streams. We also varied detritivore species richness and density. The effects of the abiotic and diversity manipulations were similar in magnitude, but whereas leaf decomposition increased by 18% and 8% following liming and nutrient enrichment, respectively, increased detritivore richness reduced leaf decomposition (6%), detritivore LPE (19%) and detritivore growth (12%). The detritivore richness effect on growth was associated with negative trait-independent complementarity, indicating interspecific interference competition. These interactions were apparently alleviated in both enriched and limed enclosures, as trait-independent complementarity became less negative. LPE increased with detritivore density in the monocultures, indicating benefits of intra-specific aggregation that outweighed the costs of intra-specific competition, and dilution of these benefits probably contributed to lowered leaf decomposition in the species mixtures. Finally, the effects of liming were reduced in most species mixtures relative to the monocultures. These results demonstrate how environmental changes might regulate the consequences of species loss for functioning in anthropogenically perturbed ecosystems, and highlight potential influences of biodiversity on functional stability. Additionally, the negative effects of richness and positive effects of density in our field study were opposite to previous laboratory observations, further illustrating the importance of environmental context for biodiversity–ecosystem functioning relationships.  相似文献   

15.
Observed patterns of species richness at landscape scale (gamma diversity) cannot always be attributed to a specific set of explanatory variables, but rather different alternative explanatory statistical models of similar quality may exist. Therefore predictions of the effects of environmental change (such as in climate or land cover) on biodiversity may differ considerably, depending on the chosen set of explanatory variables. Here we use multimodel prediction to evaluate effects of climate, land-use intensity and landscape structure on species richness in each of seven groups of organisms (plants, birds, spiders, wild bees, ground beetles, true bugs and hoverflies) in temperate Europe. We contrast this approach with traditional best-model predictions, which we show, using cross-validation, to have inferior prediction accuracy. Multimodel inference changed the importance of some environmental variables in comparison with the best model, and accordingly gave deviating predictions for environmental change effects. Overall, prediction uncertainty for the multimodel approach was only slightly higher than that of the best model, and absolute changes in predicted species richness were also comparable. Richness predictions varied generally more for the impact of climate change than for land-use change at the coarse scale of our study. Overall, our study indicates that the uncertainty introduced to environmental change predictions through uncertainty in model selection both qualitatively and quantitatively affects species richness projections.  相似文献   

16.
17.
Environmental changes are driving rapid geographic shifts of suitable environmental conditions for species. These might survive by tracking those shifts, however successful responses will depend on the spatial distribution of suitable habitats (current and future) and on their connectivity. Most herptiles (i.e., amphibians and reptiles) have low dispersal abilities, and therefore herptiles are among the most vulnerable groups to environmental changes. Here we assessed the vulnerability of herptile species to future climate and land use changes in fragmented landscapes. We developed and tested a methodological approach combining the strengths of Species Distribution Models (SDMs) and of functional connectivity analysis. First, using SDMs we forecasted current and future distributions of potential suitable areas as well as range dynamics for four herptile species in Portugal. SDM forecasts for 2050 were obtained under two contrasting emission scenarios, translated into moderate (low-emissions scenario) or large (high-emissions scenario) changes in climate and land use conditions. Then, we calculated and analysed functional connectivity from areas projected to lose environmental suitability towards areas keeping suitable conditions. Landscape matrix resistance and barrier effects of the national motorway network were incorporated as the main sources of fragmentation. Potential suitable area was projected to decrease under future conditions for most test species, with the high-emissions scenario amplifying the losses or gains. Spatiotemporal patterns of connectivity between potentially suitable areas signalled the most important locations for maintaining linkages and migration corridors, as well as potential conflicts due to overlaps with the current motorway network. By integrating SDM projections with functional connectivity analysis, we were able to assess and map the vulnerability of distinct herptile species to isolation or extinction under environmental change scenarios. Our framework provides valuable information, with fairly low data requirements, for optimizing biodiversity management and mitigation efforts, aiming to reduce the complex and often synergistic negative impacts of multiple environmental change drivers. Implications for conservation planning and management are discussed from a global change adaptation perspective.  相似文献   

18.
Biodiversity in the Tropical Andes is under continuous threat from anthropogenic activities. Projected changes in climate will likely exacerbate this situation. Using species distribution models, we assess possible future changes in the diversity and climatic niche size of an unprecedented number of species for the region. We modeled a broad range of taxa (11,012 species of birds and vascular plants), including both endemic and widespread species and provide a comprehensive estimation of climate change impacts on the Andes. We find that if no dispersal is assumed, by 2050s, more than 50% of the species studied are projected to undergo reductions of at least 45% in their climatic niche, whilst 10% of species could be extinct. Even assuming unlimited dispersal, most of the Andean endemics (comprising ∼5% of our dataset) would become severely threatened (>50% climatic niche loss). While some areas appear to be climatically stable (e.g. Pichincha and Imbabura in Ecuador; and Nariño, Cauca, Valle del Cauca and Putumayo in Colombia) and hence depict little diversity loss and/or potential species gains, major negative impacts were also observed. Tropical high Andean grasslands (páramos and punas) and evergreen montane forests, two key ecosystems for the provision of environmental services in the region, are projected to experience negative changes in species richness and high rates of species turnover. Adapting to these impacts would require a landscape-network based approach to conservation, including protected areas, their buffer zones and corridors. A central aspect of such network is the implementation of an integrated landscape management approach based on sustainable management and restoration practices covering wider areas than currently contemplated.  相似文献   

19.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

20.
There is compelling evidence for positive effects of plant diversity on the functioning of forests and agroecosystems. This information is increasingly used to optimize production systems that provide a wide range of ecosystem services. While agroforestry is actively promoted for the sustainable intensification of agriculture and restoration of degraded landscapes, there is a paucity of knowledge on Biodiversity Ecosystem Functioning (BEF) relationships in agroforestry systems. Since BEF-relationships in agroforestry might be shaped by combinations of different life-forms (e.g. trees, shrubs, herbs) and their interactions, experiences from grassland and forest experiments cannot be readily transferred to agroforestry. This highlights the need for a new type of experiments in agroforestry to advance our understanding of the role of biodiversity for the functioning of these systems. Therefore, our aim was to develop a conceptual framework for analysing BEF-relationships in agroforestry systems and to present an exemplary design for this purpose, which we placed in a (sub)tropical context. Based on designs used in tree diversity experiments, we suggest four major design principles: 1) a trait-based approach for selecting tree and crop species, 2) the integration of trees and crops along a gradient of functional diversity, 3) maintaining constant density across different combinations of life-forms in agroforests through the concept of “growing-patch-density”, and 4) disentangling a priori the effects of species diversity on ecosystem functioning from those of structural and functional diversity, defined here as the variation in structural attributes such as plant dimensions and in plant functional traits, respectively. Our conceptual design and the embedded principles offer a promising avenue to identify important drivers of specific BEF-relationships and to quantify management influences on these. This design can support new research projects that aim at improving ecosystem functioning of agroforestry with the view of optimizing the provision of ecosystem services and facilitation of ecosystem restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号