首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The production of d-aminoacylase by Alcaligenes denitrificans and Alcaligenes faecalis has been studied. The enzyme was inducibly produced and N-acetyl-d-leucine and N-acetyl-d-valine were the most effective inducers. d-methionine, d-valine, d-phenylalamine and d-leucine were produced by the enzymic hydrolysis of the appropriate N-acetyl-d-amino-acids with whole cell biomass. The hydrolysis of N-acetyl-d-methionine by A. denitrificans and N-acetyl-d-valine by A. faecalis was preferential. Maximum yields of d-methionine and d-valine were 94.3 and 84.7% at a specific product formation rate of 20.10 and 19.19 μmol min−1 mg−1 of wet cells at 20 mM substrate concentration and 5 mg ml−1 of cell density.  相似文献   

2.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

3.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

4.
5.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

6.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

7.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

8.
A simple and rapid technique for the determination of the d-amino acids which are oxidized by d-amino acid oxidase has been presented. This method involves an oxidation of d-amino acids with d-amino acid oxidase in the presence of catalase, and the spectrophotometric determination of the resultant α-keto acids with MBTH. The additions of l-amino acids have no influence on the quantitative estimation of d-amino acids. The method is suitable for the assay of d-amino acids in the presence of the l isomers, and is also applicable for the determination of d-amino acid oxidase activity.  相似文献   

9.
Modified d-glucose and d-mannose analogs are potentially clinically useful metabolic inhibitors. Biological evaluation of 2-deoxy-2-halo analogs has been impaired by limited availability and lack of efficient methods for their preparation. We have developed practical synthetic approaches to 2-deoxy-2-fluoro-, 2-chloro-2-deoxy-, 2-bromo-2-deoxy-, and 2-deoxy-2-iodo derivatives of d-glucose and d-mannose that exploit electrophilic addition reactions to a commercially available 3,4,6-tri-O-acetyl-d-glucal.  相似文献   

10.
Three genes respectively encoding d-specific hydantoinase (DHHase), N-carbamoyl-d-amino acid amidohydrolase (DCHase) and hydantoin racemase (HRase) were co-expressed in E. coli in a system designed for the efficient enzymatic production of d-amino acids via a combination of hydantoin hydrolysis and hydantoin racemization. With the use of whole cells, the d-forms of eight amino acids – d-phenylalanine, d-tyrosine, d-tryptophan, O-benzyl-d-serine, d-valine, d-norvaline, d-leucine and d-norleucine – were efficiently converted from the corresponding dl-5-monosubtituted hydantoin compounds.  相似文献   

11.
Starting from 3β-hydroxy-17-oxo-16,17-secoandrost-5-ene-16-nitrile (1), the new 16,17-secoandrostane derivatives 49 were synthesized. On the other hand, 3β-hydroxy-17-oxa-d-homoandrost-5-ene-16-one (10) yielded the new d-homo derivatives 12, 13 and 15. In vitro antiproliferative activity of selected compounds against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER−, MDA-MB-231, prostate cancer AR−, PC-3, and normal fetal lung fibroblasts, MRC-5) was evaluated. Compounds 3 and 12 showed strong antiproliferative activity against PC-3 cells, the IC50 values being 2 μM and 0.55 μM, respectively. Compounds 6 (10 μM) and 14 (9 μM) showed moderate activity against MDA-MB-231 cells. The synthesized compounds 13, 58, 10 and 1215 were not toxic to normal fetal lung fibroblasts cells, MRC-5.  相似文献   

12.
Human d-amino acid oxidase (hDAAO) is a flavoprotein that plays a key role in the pathophysiology of schizophrenia. So far, the biochemical characterization of this enzyme has been hampered by the difficulty of expressing it in a common heterologous host such as Escherichia coli. Increasing amounts of recombinant hDAAO are indeed required for the investigation of its structure–function relationships and for the screening of new inhibitors to be used in the treatment of schizophrenia. A recombinant hDAAO has been over-expressed in BL21(DE3)Star E. coli cells. By alternating screenings of medium components at flask level and investigating physiological parameters in 2 L controlled batch fermentations, an improved, robust and scalable microbial process was set up giving almost a 40- and 4-fold improvement in volumetric productivity and specific activity, respectively. Under these conditions 770 U/L culture hDAAO with a specific activity of 0.4 U/mg protein and a specific productivity of 24.9 U/g biomass were produced. Optimization of medium ingredients, of the time and the amount of inducer’s addition, pH control at the moment of induction and harvest, low mechanical shear stress regime during recombinant protein production, represent the factors concurring to achieve the reported expression level. Notably, this expression level is higher than any previously described production of hDAAOs. A yield of 100 mg of pure hDAAO/L culture thus became available in comparison to the 1–10 mg/L previously reported.  相似文献   

13.
d-glycero-d-manno-Heptopyranose 7-phosphate—an intermediate in the biosynthesis of nucleotide-activated heptoses—has been prepared in good overall yield from benzyl 5,6-dideoxy-2,3-O-isopropylidene-α-d-lyxo-(Z)-hept-5-enofuranoside by a short-step synthesis. Phosphitylation using the phosphoramidite procedure followed by in situ oxidation afforded the corresponding 7-O-phosphotriester derivative in high yield. Subsequent osmylation proceeded in good diastereoselectivity (4:1) to furnish the d-glycero-d-manno-configured derivative, which was separated from the l-glycero-l-gulo-isomer by chromatography. Hydrogenolysis led to simultaneous removal of the benzyl and isopropylidene groups and afforded the target compound in high yield, which serves as a substrate of bacterial heptose 7-phosphate kinases.  相似文献   

14.
Several bases have been evaluated as catalysts for the production of d-psicose (d-ribo-2-hexulose) from d-fructose. The hexose levels in the isomerized mixtures were quantified by l.c. on a μBondapak/Carbohydrate column. The most effective and convenient base was found to be pyridine, and mixtures produced by boiling concentrated solutions (1 g/mL) of d-fructose in pyridine under reflux contained 12.4% of psicose, lesser proportions of glucose and mannose, and 25.8% of the starting material. Following removal of solvent, fermentation with bakers' yeast removed most hexoses other than d-psicose, which was isolated by chromatography on cellulose. The entire procedure required three days, and d-psicose was obtained in gram quantities in 6.8% of the theoretical yield.  相似文献   

15.
A general and flexible synthetic approach to biologically important 5,6-unsaturated C18-phytosphingosines was developed via olefin cross-metathesis employing truncated C6-phytosphingosines as the key intermediates. These were efficiently prepared in high yields by zinc-mediated reductive opening of methyl 2-amino-2-deoxy-β-hexopyranosides.

  相似文献   

16.
Failure of human lymphoid cell lines to grow in d-valine-substituted media is associated with the lack of d-amino acid oxidase activity in these cells.  相似文献   

17.
The X-ray diffraction patterns, 13C CP MAS NMR spectra, and powder X-ray diffraction analyses were obtained for selected p-nitrophenyl glycosides: α- and β-d-galactopyranosides (1 and 2), α- and β-d-glucopyranosides (3 and 4), and α- and β-d-mannopyranosides (5 and 6). In X-ray diffraction analysis of 1 and 2, characteristic shortening and lengthening of selected bonds were observed in the molecules of 1 due to anomeric effect, and in the crystal lattice of 1 and 2, hydrogen bonds of complex network were detected. In the crystal asymmetric unit of 1 there were two independent molecules, whereas in 2 there was one molecule. For 1 and 36 the number of resonances in solid-state 13C NMR spectra exceeded the number of the carbon atoms in the molecules, while for 2 there were distinct singlet resonances in its solid-state NMR spectrum. Furthermore, the powder X-ray diffraction (PXRD) performed for 13 and 5 revealed that 1, 3, and 5 existed as single polymorphs proving that the doublets observed in appropriate solid-state NMR spectra were connected with two non-equivalent molecules in the crystal asymmetric unit. On the other hand 2 existed as a mixture of two polymorphs, one of them was almost in agreement with the calculated pattern obtained from XRD (the difference in volumes of the unit cells), and the subsequent unknown polymorph existed in small amounts and therefore it was not observed in solid-state NMR measurements.  相似文献   

18.
Polyaniline (PANI) is a water-insoluble polymer that has been used as support for enzyme immobilization due to its desirable characteristics, such as ease of preparation, high synthesis yield, high stability to temperature and pH, and resistance to microbial attack. In this work an investigation was carried out to determine the best conditions to immobilize d-hydantoinase (E.C. 3.5.2.2) in this support. As result, a simple and fast methodology for d-hydantoinase immobilization in PANI is described. 100% of proteins were immobilized on the support in concentrations up to 2 mg solid/ml. Higher concentrations led to a lower protein percentage immobilized. After five reaction cycles about a half of d-hydantoinase initial activity was conserved.  相似文献   

19.
20.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号