首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

2.
Continent-wide variation in hydrogen isotopic composition of precipitation is incorporated into animal diets, providing an intrinsic marker of geographic location at the time of tissue growth. Feathers from migratory birds are now frequently analyzed for stable-hydrogen isotopes (δD) to estimate the location of individuals during a preceding molt. Using known-origin birds, we tested several assumptions associated with this emerging technique. We examined hydrogen isotopic variation as a function of age, sex, feather type and the timing of molt in a marked population of American redstarts (Setophaga ruticilla) breeding in southeastern Ontario. We measured δD in feathers and blood from individuals that bred or hatched at our study site during the year in which those tissues were grown. Juvenile tissues from 5- to 10-day-old birds had more negative δD values than those from adults, which most likely reflected age-related differences in diet. Within adults, primary feathers had more negative δD values than contour feathers. The mean δD value in adult primary feathers was relatively consistent among years and with the value expected for our study population. However, among-individual variation in δD corresponded to an estimated latitudinal range of 6–8° (650–900 km). We conclude that feathers sampled from recently hatched juveniles may not provide a reliable estimate of expected local isotopic signatures for comparison with adult feathers of unknown origin. Furthermore, we urge researchers to use caution when using δD values in feathers to infer geographic origin, and suggest that the best approach is to assign individuals to broad geographic zones within a species’ potential molting range.  相似文献   

3.
It is widely accepted that stable isotope ratios in inert tissues such as feather keratin reflect the dietary isotopic signature at the time of the tissue synthesis. However, some elements such as stable nitrogen isotopes can be affected by individual physiological state and nutritional stress. Using malaria infection experiment protocols, we estimated the possible effect of malaria parasite infections on feather carbon (δ13C) and nitrogen (δ15N) isotope signatures in juvenile common crossbills Loxia curvirostra. The birds were experimentally infected with Plasmodium relictum (lineage SGS1) and P. ashfordi (GRW2), two widespread parasites of passerines. Experimental birds developed heavy parasitemia of both parasites and maintained high levels throughout the experiment (33 days). We found no significant difference between experimental and control birds in both δ13C and δ15N values of feathers re-grown. The study shows that even heavy primary infections of malaria parasites do not affect feather δ13C and δ15N isotopic signatures. The results of this experiment demonstrate that feather isotope values of wild-caught birds accurately reflect the dietary isotopic sources at the time of tissue synthesis even when the animal’s immune system might be challenged due to parasitic infection.  相似文献   

4.
The snowy owl is an elusive arctic predator known for its nomadic behaviour. Satellite tracking has revealed that some adult snowy owls could make an extensive use of the marine environment during the non‐breeding season. However, the relative contribution of marine resources to their diet is unknown. Stable isotope analyses can be useful to document the diet of mobile animals during periods of the year when individuals are less accessible. This study aimed to assess variation in isotopic values (δ13C and δ15N) of various feather types, and the usefulness of feathers to determine the contribution of the marine environment to the winter diet of snowy owls captured in summer. We sampled feathers coming from 6 body regions of 18 breeding females at two sites in the eastern Canadian Arctic in 2013 and 2014. Prior to analyses, diet‐tissue discrimination factors of snowy owl feathers were established in captivity. Variability in isotopic values among feather types was relatively low and pairwise correlations in isotopic values between feathers on the same individual were variable and often low, which suggests differences in the diet at the time when various feathers were synthesized. Diet reconstruction models detected a contribution of marine sources to snowy owl feathers ranging from 4 to 19% among feather types. However, the marine contribution was highly variable when single feathers were examined within individuals, ranging from 3 to 71%. This indicated that no single feather type could be used alone to reliably infer the contribution of marine resources to the winter diet of owls, possibly due to a high variability in the timing and sequence of molt. For asynchronous molters like snowy owls, we recommend sampling multiple feathers from various body regions, excluding wing feathers, to investigate winter diet or habitat use.  相似文献   

5.
Analysis of stable isotope ratios is increasingly used to reconstruct diets in passerine birds, but studies of diet–tissue isotopic discrimination for this avian group are scarce. We determined 15N and 13C diet–tissue discrimination factors on whole blood in the red-throated ant tanager (Habia fuscicauda), an insectivorous–frugivorous passerine. Birds were fed an isotopically uniform, semi-synthetic diet of dog puppy dry food, soy protein isolate, wheat germ, and other ingredients, during 92 days. Average (± SD) diet–tissue discrimination was 2.6 ± 0.2‰ for N and 2.2 ± 0.1‰ for C. Nitrogen diet-tissue discrimination was similar to the values found previously in other passerines fed animal protein and it can probably be used to accurately reconstruct protein dietary origin in passerines feeding on animal protein (e.g., insects). In the case of C, diet reconstruction might be affected by metabolic routing of dietary nutrients.  相似文献   

6.
It has recently been reported that N2 fixation and carbon isotope discrimination (Δ) are negatively correlated. To further test this hypothesis, a greenhouse experiment was conducted to investigate if Δ is correlated with the efficiency of lentil (Lens culinaris cv Laird) in fixing atmospheric nitrogen. Lentil seed was inoculated with one of 10 Rhizobium leguminosarum strains that varied in their effectiveness in symbiotic N2 fixation. Carbon-13 discrimination was positively correlated with N2 fixation (r2=0.60*). Although the amount of N2 fixed ranged from 1.5 mg N to 13.5 mg N shoot−1, the range of Δ values was only 25.8 to 26.6%.. It is unlikely that variability of such small magnitude could be of any practical use in selecting for N2-fixing efficiency.  相似文献   

7.
Using measurements of naturally occurring stable isotopes to reconstruct diets or source of feeding requires quantifying isotopic discrimination factors or the relationships between isotope ratios in food and in consumer tissues. Diet-tissue discrimination factors of carbon ((13)C/(12)C, or delta (13)C) and nitrogen ((15)N/(14)N, or delta (15)N) isotopes in whole blood and feathers, representing noninvasive sampling techniques, were examined using three species of captive penguins (king Aptenodytes patagonicus, gentoo Pygoscelis papua, and rockhopper Eudyptes chrysocome penguins) fed known diets. King and rockhopper penguins raised on a constant diet of herring and capelin, respectively, had tissues enriched in (15)N compared to fish, with discrimination factors being higher in feathers than in blood. These data, together with previous works, allowed us to calculate average discrimination factors for (15)N between whole lipid-free prey and blood and feathers of piscivorous birds; they amount to +2.7 per thousand and +4.2 per thousand, respectively. Both fish species were segregated by their delta (13)C and delta (15)N values, and importantly, lipid-free fish muscle tissue was consistently depleted in (13)C and enriched in (15)N compared to whole lipid-free fish. This finding has important implications because previous studies usually base dietary reconstructions on muscle of prey rather than on whole prey items consumed by the predator. We tested the effect of these differences using mass balance calculations to the quantification of food sources of gentoo penguins that had a mixed diet. Modeling indicated correct estimates when using the isotopic signature of whole fish (muscle) and the discrimination factors between whole fish (muscle) and penguin blood. Conversely, the use of isotopic signatures of muscle together with discrimination factors between whole fish and blood (or the reverse) leads to spurious estimates in food proportions. Consequently, great care must be taken in the choice of isotopic discrimination factors to apply to wild species for which no controlled experiments on captive individuals have been done. Finally, our results also indicate that there is no need to remove lipids before isotopic analysis of avian blood.  相似文献   

8.
When using stable isotopes as dietary tracers it is essential to consider effects of nutritional state on isotopic fractionation. While starvation is known to induce enrichment of 15N in body tissues, effects of moderate food restriction on isotope signatures have rarely been tested. We conducted two experiments to investigate effects of a 50–55% reduction in food intake on δ15N and δ13C values in blood cells and whole blood of tufted puffin chicks, a species that exhibits a variety of adaptive responses to nutritional deficits. We found that blood from puffin chicks fed ad libitum became enriched in 15N and 13C compared to food-restricted chicks. Our results show that 15N enrichment is not always associated with food deprivation and argue effects of growth on diet–tissue fractionation of nitrogen stable isotopes (Δ15N) need to be considered in stable isotope studies. The decrease in δ13C of whole blood and blood cells in restricted birds is likely due to incorporation of carbon from 13C-depleted lipids into proteins. Effects of nutritional restriction on δ15N and δ13C values were relatively small in both experiments (δ15N: 0.77 and 0.41‰, δ13C: 0.20 and 0.25‰) compared to effects of ecological processes, indicating physiological effects do not preclude the use of carbon and nitrogen stable isotopes in studies of seabird ecology. Nevertheless, our results demonstrate that physiological processes affect nitrogen and carbon stable isotopes in growing birds and we caution isotope ecologists to consider these effects to avoid drawing spurious conclusions.  相似文献   

9.
In order to understand the detailed mechanism of the stereoselective photoinduced electron-transfer (ET) reactions of zinc-substituted myoglobin (ZnMb) with optically active molecules by flash photolysis, we designed and prepared new optically active agents, such as N,N′-dimethylcinchoninium diiodide ([MCN]I2) and N,N′-dimethylcinchonidinium diiodide ([MCD]I2). The photoexcited triplet state of ZnMb, 3(ZnMb)*, was successfully quenched by [MCN]2+ and [MCD]2+ ions to form the radical pair of ZnMb cation (ZnMb·+) and reduced [MCN]·+ and [MCD]·+, followed by a thermal back ET reaction to the ground state. The rate constants (k q) for the ET quenching at 25 °C were obtained as k q(MCN)=(1.9±0.1)×106 M−1 s−1 and k q(MCD)=(3.0±0.2)×106 M−1 s−1, respectively. The ratio of k q(MCD)/k q(MCN)=1.6 indicates that the [MCD]2+ preferentially quenches 3(ZnMb)*. The second-order rate constants (k b) for the thermal back ET reaction from [MCN]·+ and [MCD]·+ to ZnMb·+ at 25 °C were k b(MCN)=(0.79±0.04)×108 M−1 s−1 and k b(MCD)=(1.0±0.1)×108 M−1 s−1, respectively, and the selectivity was k q(MCD)/k q(MCN)=1.3. Both quenching and thermal back ET reactions are controlled by the ET step. In the quenching reaction, the energy differences of ΔΔH (MCD–MCN) and ΔΔS (MCD–MCN) at 25 °C were obtained as −1.1 and 0 kJ mol−1, respectively. On the other hand, ΔΔH (MCD–MCN)=11±2 kJ mol−1 and TΔΔS (MCD–MCN)=−10±2 kJ mol−1 were given in the thermal back ET reaction. The highest stereoselectivity of 1.7 for [MCD]·+ found at low temperature (10 °C) was due to the ΔΔS value obtained in the thermal back ET reaction. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
Faecal stable isotope compositions reflect wildlife diets, if digestive processes along the gastrointestinal tract (GIT) do not alter diet–faeces isotopic relationships in an unpredictable way. We investigated 13C and 15N compositions of digesta along the ruminant GIT, using Saanen dairy goats kept on pure grass hay or browse for >20 days. Isotopic changes occurred in the ventral rumen, and in the small intestine, where digesta had significantly higher δ13C and δ15N (associated with lower C or higher N content, respectively) values relative to other GIT sites. However, effects on isotope fractionation were small (∼1.0‰ for δ13C and ∼ 2.0‰ for δ15N), and were reversed in the hindgut such that faecal isotope compositions did not differ from the foregut. No other substantial isotopic changes occurred across GIT sites, despite the morphophysiological complexity of the ruminant GIT. We found similarly small differences across GIT components of rheem gazelles (Gazella leptoceros) fed a mixture of C3 lucerne and C4 grass, although in this case faeces were 15N-depleted relative to other GIT components. Along with differences in δ15N between goats fed browse or grass, this result implies a systematic difference in diet–faeces δ15N relationships, contingent on the botanical composition of ruminant diets. Thus, while our results support faecal δ13C as a reliable proxy for wildlife diets, further work on factors influencing faecal 15N abundance is needed. Finally, we note high levels of isotopic variability between individuals fed the same diets, even accounting for the relatively short duration of the experiments, suggesting an important influence of stochasticity on isotope fractionation.  相似文献   

11.
Linking isotopic and migratory patterns in a pelagic seabird   总被引:1,自引:0,他引:1  
The value of stable isotope analysis in tracking animal migrations in marine environments is poorly understood, mainly due to insufficient knowledge of isotopic integration into animal tissues within distinct water masses. We investigated isotopic and moult patterns in Cory’s shearwaters to assess the integration of different stable isotopes into feathers in relation to the birds’ transoceanic movements. Specimens of Mediterranean Cory’s shearwater Calonectris diomedea diomedea caught accidentally by Catalan longliners were collected and the signatures of stable isotopes of C (δ13C), N (δ15N) and S (δ34S) were analysed in 11 wing and two tail feathers from 20 birds, and in some breast feathers. Based on isotopic signatures and moult patterns, the feathers segregated into two groups (breeding and wintering), corresponding to those grown in the Mediterranean or Atlantic regions, respectively. In addition, feathers grown during winter, i.e. moulted in Atlantic waters, were grouped into two isotopically distinct profiles, presumably corresponding to the two main wintering areas previously identified for Mediterranean Cory’s shearwater in tracking studies. N signatures mainly indicated the Mediterranean-to-Atlantic migration, whereas C and S signatures differed according to the Atlantic wintering area. Our results indicate that isotopic signatures from distant oceanic regions can integrate the feathers of a given bird and can indicate the region in which each feather was grown. This study thus underscores how stable isotope analysis can link marine animals to specific breeding and wintering areas, and thereby shed new light on studies involving assignment, migratory connectivity and carry-over effects in the marine environment. Xavier Ruiz deceased 27 April 2008.  相似文献   

12.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

13.
The foraging strategies of king penguins from Heard and Macquarie islands were compared using satellite telemetry, time-depth recorders and diet samples. Trip durations were 16.8±3.6 days and 14.8±4.1 days at Macquarie and Heard islands, respectively. At Macquarie Island, total distances travelled were 1281±203 km compared to 1425±516 km at Heard Island. The total time the penguins spent at sea was 393±66 h at Macquarie Island and 369±108 h at Heard Island. The penguins from Macquarie Island performed more deep dives than those from Heard Island. King penguins from Macquarie Island travelled 1.5±0.2 km h−1 day−1 compared to 1.3±0.1 km h−1 day−1. At Macquarie Island, 19% of dives were upto 70–90 m depth compared to 35% at Heard Island. The main dietary prey species were the fish Krefftychthis anderssoni and the squid Moroteuthis ingens in both groups. The differences in the at-sea distribution and the foraging behaviour of the two groups of penguins were possibly related to differences in oceanography and bathymetric conditions around the two islands. Dietary differences may be due to interannual variability in prey availability since the two colonies were studied during incubation but in different years.  相似文献   

14.
Billings SA  Richter DD 《Oecologia》2006,148(2):325-333
Understanding what governs patterns of soil δ15N and δ13C is limited by the absence of these data assembled throughout the development of individual ecosystems. These patterns are important because stable isotopes of soil organic N and C are integrative indicators of biogeochemical processing of soil organic matter. We examined δ15N of soil organic matter (δ15NSOM) and δ13CSOM of archived soil samples across four decades from four depths of an aggrading forest in southeastern USA. The site supports an old-field pine forest in which the N cycle is affected by former agricultural fertilization, massive accumulation of soil N by aggrading trees over four decades, and small to insignificant fluxes of N via NH3 volatilization, nitrification, and denitrification. We examine isotopic data and the N and C dynamics of this ecosystem to evaluate mechanisms driving isotopic shifts over time. With forest development, δ13CSOM became depth-dependent. This trend resulted from a decline of ~2‰ in the surficial 15 cm of mineral soil to −26.0‰, due to organic matter inputs from forest vegetation. Deeper layers exhibited relatively little trend in δ13CSOM with time. In contrast, δ15NSOM was most dynamic in deeper layers. During the four decades of forest development, the deepest layer (35–60 cm) reached a maximum δ15N value of 9.1‰, increasing by 7.6‰. The transfer of >800 kg ha−1 of soil organic N into aggrading vegetation and the forest floor and the apparent large proportion of ectomycorrhizal (ECM) fungi in these soils suggest that fractionation via microbial transformations must be the major process changing δ15N in these soils. Accretion of isotopically enriched compounds derived from microbial cells (i.e., ECM fungi) likely promote isotopic enrichment of soils over time. The work indicates the rapid rate at which ecosystem development can impart δ15NSOM and δ13CSOM signatures associated with undisturbed soil profiles.  相似文献   

15.
Natural 15N abundance values were measured in needles, twigs, wood, soil, bulk precipitation, throughfall and soil water in a Douglas fir (Pseudotsuga menziesii (Mirb.) and a Scots pine (Pinus sylvestris L.) stand receiving high loads of nitrogen in throughfall (>50 kg N ha−1 year−1). In the Douglas fir stand δ15N values of the vegetation ranged between −5.7 and −4.2‰ with little variation between different compartments. The vegetation of the Scots pine stand was less depleted in 15N and varied from −3.3 to −1.2‰δ15N. At both sites δ15N values increased with soil depth, from −5.7‰ and −1.2‰ in the organic layer to +4.1‰ and +4.7‰ at 70 cm soil depth in the Douglas fir and Scots pine stand, respectively. The δ15N values of inorganic nitrogen in bulk precipitation showed a seasonal variation with a mean in NH4 +-N of −0.6‰ at the Douglas fir stand and +10.8‰ at the Scots pine stand. In soil water below the organic layer NH4 +-N was enriched and NO3 -N depleted in 15N, which was interpreted as being caused by isotope fractionation accompanying high nitrification rates in the organic layers. Mean δ15N values of NH4 + and NO3 were very similar in the drainage water at 90 cm soil depth at both sites (−7.1 to −3.8‰). A dynamic N cycling model was used to test the sensitivity of the natural abundance values for the amount of N deposition, the 15N ratio of atmospheric N deposited and for the intrinsic isotope discrimination factors associated with N transformation processes. Simulated δ15N values for the N saturated ecosystems appeared particularly sensitive to the 15N ratio of atmospheric N inputs and discrimination factors during nitrification and mineralization. The N-saturated coniferous forest ecosystems studied were not characterized by elevated natural 15N abundance values. The results indicated that the natural 15N abundance values can only be used as indicators for the stage of nitrogen saturation of an ecosystem if the δ15N values of the deposited N and isotope fractionation factors are taken into consideration. Combining dynamic isotope models and natural 15N abundance values seems a promising technique for interpreting natural 15N abundance values found in these forest ecosystems. Received: 5 May 1996 / Accepted: 10 April 1997  相似文献   

16.
Stable carbon- (δ13C), nitrogen- (δ15N) and hydrogen (δD) isotope profiles in feathers of migratory Great Reed Warblers Acrocephalus arundinaceus recaptured for 2 or more years in 6 successive years were examined to test whether the isotope profiles of individual warblers appeared to be consistent between years. Similar isotopic signatures in successive years suggested that individual birds tended to return and grow their feathers in Afro-tropical wintering habitats that generate similar δ13C, δ15N and δD signatures. Previous studies have shown that Great Reed Warblers exhibit strong natal and breeding philopatry, with most of the surviving birds returning to the breeding site. The present study of feather δ13C, δ15N and δD isotopic values demonstrate the year-to-year fidelity might also include the African moulting sites in this migratory species.  相似文献   

17.
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.  相似文献   

18.
By comparing the isotopic composition of tissues deposited at different times, we can identify individuals that shift diets over time and individuals with constant diets. We define an individual as an isotopic specialist if tissues deposited at different times have similar isotopic composition. If tissues deposited at different times differ in isotopic composition we define an individual as an isotopic generalist. Individuals can be dietary generalists but isotopic specialists if they feed on the same resource mixture at all times. We assessed the degree of isotopic and dietary specialization in three related Chilean bird species that occupy coastal and/or freshwater environments: Cinclodes oustaleti, Cinclodes patagonicus, and Cinclodes nigrofumosus. C. oustaleti individuals were both isotopic and dietary generalists. Tissues deposited in winter (liver and muscle) had distinct stable C (δ13C) and stable N isotope ratio (δ15N) values from tissues deposited in the summer (wing feathers) suggesting that birds changed the resources that they used seasonally from freshwater habitats in the summer to coastal habitats in the winter. Although the magnitude of seasonal isotopic change was high, the direction of isotopic change varied little among individuals. C. patagonicus included both isotopic specialists and generalists, as well as dietary specialists and generalists. The isotopic composition of the feathers and liver of some C. patagonicus individuals was similar, whereas that of others differed. In C. patagonicus, there were large inter-individual differences in the magnitude and the direction of seasonal isotopic change. All individuals of C. nigrofumosus were both isotopic and dietary specialists. The distribution of δ13C and δ15N values overlapped broadly among tissues and clustered in a small, and distinctly intertidal, region of δ space. Assessing individual specialization and unraveling the factors that influence it, have been key questions in animal ecology for decades. Stable isotope analyses of several tissues in appropriate study systems provide an unparalleled opportunity to answer them.  相似文献   

19.
Lake Taihu is a large, shallow, and eutrophic lake in China. It has provided local communities with valuable fisheries for centuries, but little is known of the trophodynamics, or of its faunal communities. Carbon and nitrogen isotopic composition was used to assess its trophic pathways and the food web structure [food sources and trophic levels (TL)]. Basal food sources were distinguishable based on their δ13C values, ranging from −27.2 to −15.2‰. Consumers were also well separated in δ13C (−26.9 to −17.9‰ for invertebrates and −25.7 to −18.1‰ for fishes), which allowed for an effective discrimination of carbon sources between these fauna. An average trophic enrichment factor of 3.4‰ was used to calculate the TLs based on δ15N of zooplankton, with results indicating a food web having four TLs. Although δ15N values overlap and cover a large range within trophic compartments, the isotopic signatures of the species assessed revealed a general trend of 15N enrichment with increasing TL. Stable isotope signatures were also used to establish a general food web scheme in which five main trophic pathways were analyzed.  相似文献   

20.
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3 (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号