首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

4.
5.
6.
7.
Superoxide dismutases (SODs) constitute the first line of cellular defense against oxidative stress in plants. SODs generally occur in three different forms with Cu/Zn, Fe, or Mn as prosthetic metals. We cloned the full-length cDNA of the Thellungiella halophila Cu/Zn-SOD gene ThCSD using degenerate RT-PCR and rapid amplification of cDNA ends (RACE). Sequence analysis indicated that the ThCSD gene (GenBank accession number EF405867) had an open reading frame of 456 bp. The deduced 152-amino acid polypeptide had a predicted molecular weight of 15.1 kDa, an estimated pI of 5.4, and a putative Cu/Zn-binding site. Recombinant ThCSD protein was expressed in Escherichia coli and assayed for SOD enzymatic activity in a native polyacrylamide gel. The SOD activity of ThCSD was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, confirming that ThCSD is a Cu/Zn-SOD. Northern blotting demonstrated that ThCSD is expressed in roots, stems, and leaves. ThCSD mRNA levels increased by about 30-fold when plants were treated with sodium chloride (NaCl), abscisic acid (ABA), and indole-acetic acid (IAA) and by about 50-fold when treated with UVB light. These results indicate that ThCSD is involved in physiological pathways activated by a variety of environmental conditions. These authors contributed equally to this work.  相似文献   

8.
A new rare cold-inducible (RCI) gene designated Cbrci35 was cloned from Capsella bursa-pastoris, an edible wild herb, using the rapid amplification of cDNA ends (RACE) method. The full-length cDNA of Cbrci35 (Database Accession No.: AY566573) was 1300 bp and contained a 978 bp ORF encoding a precursor of 326 amino acid residues with a 23 amino acids signal peptide. The predicted Cbrci35 protein contained a peroxidase active site and proximal heme-ligand signatures, an RGD cell attachment sequence motif and two leucine zipper pattern motifs. Bioinformatics analysis revealed that Cbrci35 has a high level of similarity with RCI genes from Arabidopsis thaliana and peroxidases genes from other plants. RT-PCR analysis revealed that Cbrci35 expressed only in root. A cold acclimation assay showed that Cbrci35 was expressed immediately after cold triggering, but this expression was transient, suggesting that it concerns cold acclimation. But expression was not induced exposed to dehydration, salt stress or abscisic acid, indicating that it might be subjected specifically to cold regulation. These results indicate that Cbrci35 is an analogue of RCI genes and may participate in cold-response or increasing the freezing tolerance of plants.  相似文献   

9.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

10.
Brassica nigra is a newly found invasive species in Zhejiang Province, China. It distributes alongside the roads, in vegetable fields and on riversides. When it blooms, some natives there will suffer from allergic rhinitis. We designed gene-specific primer pairs according to reported profilin genes and successfully isolated their homolog from flower bud cDNA of B. nigra. The gene, designated BnPFN, was submitted to GenBank under accession number EU004073. BnPFN was 405 bp in length encoding 134 amino acids. Expression analysis of BnPFN gene was carried out by means of RT-PCR. The results showed that BnPFN express only in anthers and pollens, and there was no detection in roots, leaves, stems, sepals, petals and pistils. We suggest that BnPFN is a pollen-specific gene and may be responsible for pollen anaphylactic reactions in those invading areas when B. nigra blooms.  相似文献   

11.
Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3′ end of BrDCL2, clones with three different lengths of 3′ untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain.  相似文献   

12.
13.

Background  

The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways.  相似文献   

14.
15.
16.
17.
Cytolysin A (ClyA) is a pore-forming hemolytic protein encoded by the clyA gene. It has been identified in Salmonella enterica serovars Typhi and Paratyphi A. To identify and characterize the clyA genes in various Salmonella enterica strains, 21 different serotypes of strains isolated from clinical specimens were presently examined. Full-length clyA genes were found in S. enterica serovar Brandenburg, Indiana, Panama, and Schwarzengrund strains by polymerase chain reaction amplification. The ClyA proteins from these four strains showed >97% amino acid identity to that of S. enterica serovar Typhi. Although all four serovars expressed detectable levels of ClyA as determined by Western blot analysis, they did not show a strong hemolytic effect on blood agar, indicating that ClyA may not be efficiently expressed or secreted. Escherichia coli transformed with clyA genes from the four serovars enhanced production of ClyA proteins and hemolytic activities to a level similar to S. enterica serovar Typhi ClyA. The present results suggest that ClyA may play a role in the pathogenesis of S. enterica serovar Brandenburg, Indiana, Panama and Schwarzengrund.  相似文献   

18.
Mycobacterium sp. 7E1B1W and seven other mycobacterial strains known to degrade hydrocarbons were investigated to determine their ability to metabolize the piperazine ring, a substructure found in many drugs. Cultures were grown at 30°C in tryptic soy broth and dosed with 3.1 mM N-phenylpiperazine hydrochloride; samples were removed at intervals and extracted with ethyl acetate. Two metabolites were purified from each of the extracts by high-performance liquid chromatography; they were identified by mass spectrometry and 1H nuclear magnetic resonance spectroscopy as N-(2-anilinoethyl)acetamide and N-acetyl-N′-phenylpiperazine. The results show that mycobacteria have the ability to acetylate piperazine rings and cleave carbon-nitrogen bonds.  相似文献   

19.
A novel gene (Ba-ega) of Bacillus sp. AC-1, encoding an endoglucanase (Ba-EGA), was cloned and expressed in Escherichia coli. Ba-ega, containing a 1,980-bp open reading frame (ORF), encoded a protein of 659 amino acids and had a molecular mass of 74.87 kDa. Ba-EGA was a modular enzyme composed of a family-9 glycosyl hydrolase catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). To investigate the functions of the CBM3 and CM9, a number of truncated derivatives of Ba-EGA were constructed, and all were active. The catalytic module (rCM9) alone was less stable at high temperature than the recombinant Ba-EGA (rBa-EGA). The temperature stability for the complex of rCM9 and rCBM3 was still lower than rBa-EGA, but higher than rCM9 alone. These observations indicated the existence of a non-covalent interaction between CM9 and CBM3 that might strengthen the stability of CM9. However, this interaction is not strong enough to mimic the protective effect of the CBM in the wild-type enzyme.  相似文献   

20.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号