首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vivo chromosome banding technique has been developed. Swiss albino mice were injected with the DNA alkylating agents ethyl methanesulfonate, methyl methanesulfonate, or methyl ethanesulfonate 12, 24, 48 or 72 hours prior to cell harvesting. After harvesting, the cells were fixed with 3:1 methanol-acetic acid and slides were prepared by air drying. The slides were stained 21/2 minutes in 3% Giemsa in pH 6.8 Sorensen's buffer. All three alkylating agents induced chromosome bands similar to the Giemsa bands induced by other banding techniques which involve postfixation treatments.  相似文献   

2.
Differential and combined effects of 0.25 and 0.50% antibiotics (ampicillin, neomycin, furadentine) and alkylating agents (ethyl methanesulfonate, methyl ethanesulfonate, methyl methanesulfonate) were assayed on Phaseolus vulgaris L. (2 n = 22) at the M2 generation for chlorophyll mutations. The general types scored were Albino, Xantha, Virescens and Maculata. Yellowish-green leaves having red mid-veins and veinlets were observed only amongst the progeny raised after treatment with 0.25% ethyl methanesulfonate or 0.25% methyl ethanesulfonate + 0.25% ampicillin. The frequency of chlorophyll mutation after combined treatments in general was higher than after differential treatments. Methyl methanesulfonate among alkanesulfonates and neomycin among antibiotics induced higher frequencies of chlorophyll mutations. No chlorophyll mutant was produced by ampicillin.Although antibiotics induced a lower frequency of chlorophyll mutation than alkylating agents, the frequency and pattern of spectra of chlorophyll mutants showed an action of antibiotics in inducing mutation similar to that of alkylating agents. Therefore, it is considered that antibiotics are potential mutagens.  相似文献   

3.
A modified antikinetochore antibody technique was established in the V79 Chinese hamster lung cells to simultaneously analyze chromosome damage and aneuploidy induced by various agents. The method involved sequential treatment of slides with crest serum, fluoresceinated goat-antihuman and swine-antigoat antibodies, and propidium iodide. In this method, cytoplasm (green), nuclei or micronuclei (red), and kinetochores (yellow), are identified using the same filter setting under blue excitation (440-490 nm) with a barrier filter at 520 nm. Using this method, three agents, vinblastine (VB), X-rays, and methyl methanesulfonate (MMS) were tested for micronucleus/aneuploidy induction. An aneugen, VB and a clastogen, X-rays, induced predominantly kinetochore positive (K+) and negative (K-) micronucleated binucleate (MNBN) cells, respectively, in a dose-dependent fashion. An alkylating agent, MMS, produced both K+ and K- MNBN cells. These results are comparable with the results reported in the literature on these compounds using various methods and thus demonstrate the usefulness of this assay in distinguishing clastogenicity from aneugenicity.  相似文献   

4.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

5.
We have measured DNA repair in mouse satellite and main band DNA as resolved by Ag+-Cs2SO4 centrifugation in response to treatment with the alkylating agents, methyl methanesulfonate, and N-methyl-N-nitrosourea. We find that there is a statistically significant lower incorporation of 3H-Tdr into the satellite DNA as compared to the main band at varying periods after treatment with the alkylating agents. This suggests a reduced repair activity in the satellite DNA. We have measured the extent of binding of 14C-methyl methanesulfonate to the satellite, and main band DNA, and no difference in binding was observed, indicating that the reduced repair activity of satellite DNA is not due to a difference in binding of alkylating agents. We believe that the reduced incorporation of 3H-Tdr into satellite DNA may be due to its location in the condensed chromatin fraction.  相似文献   

6.
The diploid yeast strain BR1669 was used to study induction of mitotic and meiotic chromosome gain by selected chemical agents. The test relies on a gene dosage selection system in which hyperploidy is detected by the simultaneous increase in copy number of two alleles residing on the right arm of chromosome VIII: arg4-8 and cup1S (Rockmill and Fogel. 1988; Whittaker et al., 1988). Methyl methanesulfonate (MMS) induced mitotic, but not meiotic, chromosome gain. Methyl benzimidazol-2-yl carbamate (MBC) and ethyl methanesulfonate (EMS) induced both mitotic and meiotic chromosome gain. Propionitrile, a polar aprotic solvent, induced only mitotic chromosome gain; a reliable response was only achieved by overnight incubation of treated cultures at 0 degrees C. MBC is postulated to act by binding directly to tubulin. The requirement for low-temperature incubation suggests that propionitrile also induces aneuploidy by perturbation of microtubular dynamics. The alkylating agents MMS and EMS probably induce recombination which might in turn perturb chromosome segregation. Cyclophosphamide monohydrate and dimethyl sulfoxide (DMSO) failed to induce mitotic or meiotic chromosome gain.  相似文献   

7.
Differentiation of micronuclei (MN) caused by ionizing radiation from those caused by chemicals is a crucial step for managing treatment of individuals exposed to radiation. MN in binucleated lymphocytes in peripheral blood are widely used as biomarkers for estimating dose of radiation, but they are not specific for ionizing radiation. MN induced by ionizing radiation originate predominantly as a result of chromosome breaks (clastogenic action), whereas MN caused by chemical agents are derived from the loss of entire chromosomes (aneugenic action). C-banding highlights centromeres, which might make it possible to distinguish radiation induced MN, i.e., as a byproduct of acentric fragments, from those caused by the loss of entire chromosomes. To test the use of C-banding for identifying radiation induced MN, a blood sample from a healthy donor was irradiated with 3 Gy of Co-60 gamma rays and cultured. Cells were harvested and dropped onto slides, divided into a group stained directly with Giemsa and another processed for C banding, then stained with Giemsa. The frequency of MN in 500 binucleated cells was scored for each method. In preparations stained with Giemsa directly, the MN appeared as uniformly stained structures, whereas after C banding, some MN exhibited darker regions corresponding to centromeres that indicated that they were not derived from acentric fragments. The C-banding technique enables differentiation of MN from acentric chromosomal material. This distinction is useful for improving the specificity of the MN assay as a biomarker for ionizing radiation.  相似文献   

8.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

9.
Regulation of expression of the cloned ada gene in Escherichia coli   总被引:9,自引:0,他引:9  
The ada gene of Escherichia coli K12, the regulatory gene for the adaptive response of bacteria to alkylating agents, was cloned in multicopy plasmids. O6-Methylguanine-DNA methyltransferase and 3-methyladenine-DNA glycosylase II, which are known to be inducible as part of the adaptive response, were produced in ada- cells bearing ada+ plasmids, even without treatment with alkylating agents. When such cells had been treated with methyl methanesulfonate, even higher levels of the enzyme activities were produced. Maxicell experiments revealed that the ada gene codes for a polypeptide with a molecular weight of 38 000. We constructed a hybrid plasmid carrying an ada'-lacZ' fused gene, with the proper control region for ada expression. beta-Galactosidase synthesis from the fused gene was strongly induced only when cells were treated with low doses of methylating agents, but was weakly induced with relatively high doses of ethylating agents. The induction was autogenously regulated by the ada gene product, in a positive manner.  相似文献   

10.
Bacillus subtilis was not inactivated and was able to replicate even though approximately 3 x 10(4) methyl groups added by methyl methanesulfonate (MMS) were bound to the deoxyribonucleic acid (DNA) of each organism. No significant loss of methyl groups from the DNA occurred for several generations upon incubation of methylated wild-type or MMS-sensitive cells. Single-strand breaks were not observed in the DNA from cells treated at this low MMS dose. Higher doses of MMS resulted in significant killing of both wild-type and MMS-sensitive strains, and the DNA extracted from such treated cells sedimented more slowly than control DNA through alkaline sucrose gradients, indicating the presence of breaks or apurinic sites (or both). These breaks were repaired upon incubation of wild-type but not of MMS-sensitive strains. Repair of damage induced by alkylating agents is probably the repair of breaks which occur as a consequence of high levels of alkylation.  相似文献   

11.
Giemsa dye is a complex mixture containing methylene blue, its oxidation products-azure Ⅰ, Ⅱ, Ⅲ, and their eosinate. The results of our experiments have demonstrated that staining with methylene blue alone can give a faint trace of banding as well as azure Ⅰ, Ⅱ. No bands are obtained with eosin. Nevertheless, good chromosome bandings can be often produced by staining with methylene blue-eosinate or azure Ⅱ-eosinate. These data indicate that eosinate has an important effect for the formation of C-banding on plant chromosomes. In our experiments, the treatments of chromosomes with trypsin or papain have also resulted in good C-banding pattern when slides are stained with Giemsa. We found that the slides untreated with proteinase showed homogeneous intense chromosome staining and, on the contrary, the slides treated with proteinase led to palestaining chromosomes and presenting bandings. It has shown that proteinase, especially trypsin, not only can remove a large amount of chromosomal protein but also can remove DNA and results in C-bandings. Treated properly with trypsin and followed by the Feulgen staining, chromosomes can also produce the C-bandings, but chromosomes treated overtime with trypsin are stained more palely in Feulgen reaction or lead to colourlessness. The above results have further proved that trypsin technique removes large amounts of chromosome DNA and removes less from the C-band regions than from the non-band regions. In this paper we mainly discussed the effects of protein on mechanism of plant chromosome banding. We consider that the production of plant C-banding is probably due to the differential accessibility of nucleoprotein between euehromatin and heteroehromatin regions. It brings about selective removal of nucleoprotein from the chromosome arms. We have compared the effect of trypsin with papain and pepsin on producing bands. Good bands are produced by Giemsa staining chromosomes with trypsin, but no bands are obtained by staining chromosomes treated with pepsin. So the results have expressed that histones are possibly playing more important role in C-bandings.  相似文献   

12.
The present paper is dealing with the investigation of the chromosome N-banding technique and the N-banding patterns in Hordeum vulgare, Triticum aestivum, Secale cereale, Vicia faba and Allium eepa. Two N-banding techniques were applied. First, the chromosome slides were stained with Giemsa solution. Second, the slides were treated in 1 M NaH2PO4 solution at 92—94 ℃ for 3.5—8.5 min. After rinsing in tap water they were stained with Giemsa solution. The experiments have demonstrated that the N-banding technique is simple and rapid and the banding patterns are distinctive. The data of N-banding patterns indicated that the N bands did not display the nucleolus organisers exclusively. The comparison of the N-banding patterns of these plants with their C-banding patterns shows that in some of these plants although some regions of N-bands and C-bands correspond, there are a number of instances where regions show N-bands but no C-bands and vice-versa. Therefore, a combination of the N-banding and C-banding techniques should be valuable in the cytological identification of plant chromosome. Like the C-bands, the N-bands are also useful markers in cytogenetics.  相似文献   

13.
The present study explores the possibilities of using specific amino acids in haemoglobin for tissue dosimetry of alkylating agents. The well-known directly alkylating compound methyl methanesulfonate has been used as a model compound.In one experiment 3H-labelled methyl methanesulfonate was given to mice intraperitoneally at three dose levels. The degree of alkylation of haemoglobin exhibited a linear dependence on the quantity of methyl methanesulfonate injected. The degree of alkylation of guanine-N-7 in DNA indicated a slight positive deviation from linearity at high doses.After a single injection the degree of alkylation of cysteine-S and histidine-N-3 in haemoglobin decreased linearly with time reaching the value zero after about 40 days (the life-time of the erythrocytes in the mouse). This demonstrates a stability of these alkylated products, which is fundamental to their use as integral dose monitors.In a second experiment mice were treated with methyl methanesulfonate once a week over a period of 8 weeks. The experiment demonstrated an accumulation of alkylated groups in haemoglobin in agreement with expectation.A method for the quantitative determination of S-methylcysteine in a protein hydrolysate by gas chromatography was developed.  相似文献   

14.
大熊猫与黑熊显带染色体的比较研究   总被引:3,自引:0,他引:3  
王亚军  陈红卫 《遗传学报》1999,26(4):309-314
以体外培养的大熊猫(Ailuropodamelanoleuca)与黑熊(Selenarctosthibetanus)外周血淋巴细胞为实验材料,应用BrdU复制带显示技术,研究了大熊猫和黑熊染色体晚复制带带型。通过对大熊猫与黑熊显带染色体带型的比较,发现黑熊部分具端着丝粒的染色体与大熊猫部分具中,亚中,或亚端着丝粒的染色体的整个短臂或整个长臂有明显的带型相似性,在黑熊具中,亚中着丝粒染色体中,仅33  相似文献   

15.
The base alterations induced by four alkylating agents, methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-nitroso-N-methylurea (MNU), and N-nitroso-N-ethylurea (ENU), have been determined at the URA3 locus in the yeast Saccharomyces cerevisiae. The mutagen treatment was carried out on yeast cells in the logarithmic phase of growth. The mutants were selected by their resistance to 7.3 mM-5-fluoroorotic acid at pH 3.8. DNA sequence analysis was carried out by the dideoxy chain termination method. The alkylating agents were selected for their widely differing Swain-Scott substrate constants (s values), which are as follows: MMS, s = 0.83; EMS, s = 0.67; MNU, s = 0.42; ENU, s = 0.26. A higher s value is correlated with a higher ratio of 7-alkylguanine to O6-alkylguanine in native DNA in vitro. 125 forward mutations from URA3----ura3 were sequenced with marked differences in the mutational spectra being observed as the s value changed. Five hotspots were recorded for the four alkylating agents. They were all G.C----A.T transition mutations. There was one common hotspot for all of them; there were two additional ones for the two ethylating agents (ENU and EMS) and two different ones for MNU. Four of the five hotspots have the 5'-GG-3' sequence with the 3'-guanine mutated. It was seen that MMS, which has the highest Swain-Scott substrate constant, yielded the widest array of mutational types. As the substrate constants decreased, the types of mutations became more and more restricted to the G.C----A.T transitions and the A.T----T.A transversions. The transitions are consistent with the concept that mutations arise from O6-alkylation of guanine and alkylation of thymine. The transversions are consistent with the notion of N1-alkylation of adenosine or adenylic acid.  相似文献   

16.
A procedure for the quantitative determination of induced streptomycin-resistant mutants in E. coli was applied to study and compare mutation induction by the organophosphate dichlorvos and by methyl methanesulfonate (MMS). Both compounds increased the frequency of mutants even under conditions where no inactivation of cell was observed. Mutation induction by these agents as a function of both concentration and exposure time was measured. The dose-response curves found with both mutagens were non-linear; atp higher doses more mutants were induced per unit dose than at lower doses. Possible relationships between dose-effect curves and the chemical nature of alkylating mutagenic agents are discussed.  相似文献   

17.
Two methyl-methanesulfonate-sensitive strains have been isolated, one of which, M10, was cross-sensitive to X-rays as reported before. Sensitivities of parental L5178Y, M10, and newly isolated MS-1 cells to various mutagens were examined. Mutgans tested were UV, X-rays, 4-nitroquinoline 1-oxide (4NQO), caffeine and alkylating agents; methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and mitomycin C (MMC).In terms of D37 values, M10 cells were 2.5–7 times more sensitive to EMS, MMC and 4NQO as well as to MMS and X-rays than were parental L5178Y cells, while the new mutant MS-1 was about 3 times more sensitive to MMS, EMS, MMC and caffeine than were parental cells. The characteristics in sensitivities of M10 cells to X-rays, alkylating agents and 4NQO resemble some ataxia telangiectasia cells; and MS-1 cells to alkylating agents and caffeine are novel among mammalian cell mutants so far reported. Sensitivity of M10 cells to mutagens has so far been stable for one year, and that of MS-1 cells was stable for 6 months in continuous culture.  相似文献   

18.
Gene expression in E. coli after treatment with streptozotocin   总被引:2,自引:0,他引:2  
Gene induction by the methylating agents streptozotocin (STZ), N-methyl-N-nitrosourea (MNU), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was evaluated in E. coli fusion mutants. These mutants have fusions of the lac operon to genes induced by treatment with sublethal levels of alkylating agents and were previously selected from random insertions of the Mu-dl (Apr lac) phage by screening for induction of beta-galactosidase activity in the presence of methyl methanesulfonate or MNNG. The results demonstrate that STZ differs from MNNG and MNU in failing to induce aidC expression. Further, expression of aidC after exposure to MNU and MNNG occurs only in nonaerated cultures; aeration blocks the induction. Induction of aidD, alkA, aidB, and sfiA expression occurs with all 3 agents although at markedly lower concentrations of MNNG and STZ compared to MNU. alkA and to a lesser extent aidD mutants of E. coli strains were more sensitive to these agents, while no differences were evident between wild-type and aidB or aidC fusion mutants.  相似文献   

19.
Isopropyl methanesulfonate (IPMS), an SN1 alkylating agent, is a direct-acting mutagen in bacteria. We recently reported that s.c. and topical administration of IPMS to mice resulted in the rapid induction of thymic lymphomas. Thymic lymphoma induction was not observed following administration of the SN2 alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). We have studied the reactions of IPMS with dAdo, dCyd, dGuo and dThd at pH 6.5 to 7.5 and 37 degrees C for 3 h. IPMS formed the following isopropyl (IP) adducts: 7-IP-Gua (4% yield), O6-IP-Gua (8%), O2-IP-Cyt (1%), O2-IP-dThd (2%), 3-IP-dThd (1%), and O4-IP-dThd (0.4%). Adducts were characterized from UV and mass spectra. IPMS was reacted in vitro with calf thymus DNA (pH 6.5 to 7.5, 37 degrees C, 3 h) and yielded (nmol/mg DNA): 7-IP-Gua (22) O6-IP-dGuo (11), O2-IP-Cyt (9), O2-IP-dThd (2), O4-IP-dThd (2), 3-IP-Ade (0.2) and 3-IP-dThd (0.2). The relatively greater alkylation of exocyclic oxygen atoms in DNA by IPMS compared to values for MMS and EMS reported by others, may play a role in the induction of thymic lymphomas in mice by IPMS and the lack of such activity by MMS and EMS.  相似文献   

20.
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号