首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present studies were aimed to evaluate the possibility to use a system for estimation in vitro of the biosynthesis and degradation rates of human skeletal muscle protein. A previously characterized human skeletal muscle preparation was used. Amino acids and insulin stimulated significantly the incorporation rate of leucine into proteins. The effect of amino acids was more pronounced than that of insulin. The stimulatory effect of insulin could be decreased by amino acids. Insulin did not influence the tissue uptake or the oxidation rate of leucine. The release of [14C]leucine deriving from degradation of prelabelled skeletal muscle fibre proteins was linear for at least 2.5 h of incubation and optimal with leucine at concentrations beyond 12.5 mmol/1 or in the presence of puromycin in the incubation medium. The rate of the release of radioactivity was significantly inhibited by amino acids and at borderline significance by insulin but not by puromycin. The specific radioactivity in prelabelled proteins decreased significantly in the presence of puromycin suggesting that leucine derived from protein degradation was reutilized in vitro. This reutilization was found to be 9 +/- 1% of leucine released from degradation of proteins in 30 subjects. A statistically significant positive correlation between the cathepsin D activity in human skeletal muscle tissue and the degradative rate of prelabelled muscle proteins in vitro was observed. The results indicate that biosynthesis and degradation of skeletal muscle proteins in this system in vitro were subjected to control mechanisms. It is suggested that the release of radioactivity from prelabelled muscle fibre proteins during incubation probably only reflects the degradation of some rapidly-turning-over proteins.  相似文献   

2.
1. Rat heart perfused with Krebs-Henseleit bicarbonate buffer released material containing ninhydrin-positive nitrogen, but the amount was less than that reported to be released by diaphragm; glucose, but not insulin, decreased the release of ninhydrin-positive nitrogen and increased the concentration of the same material in the intracellular water of heart. 2. When heart was perfused with a mixture of amino acids and glucose, there was actually a net uptake, and an increase in intracellular concentration, of ninhydrin-positive nitrogen. Changes in the concentration of ninhydrin-positive nitrogen did not accurately reflect changes in concentration of amino acids. 3. The effect of insulin on the actual concentration of individual amino acids in heart muscle was examined by perfusing the heart with a mixture of amino acids and other ninhydrin-positive substances in the same concentration as they are found in plasma. 4. The effect of insulin on the concentrations of amino acids in the medium and in the intracellular water of the heart was determined after perfusion for different periods of time. No clear or meaningful effect of insulin was observed, despite the fact that insulin significantly increased the accumulation, in each of the same hearts, of radioactivity from amino[(14)C]isobutyric acid.  相似文献   

3.
Reuber H35 cells were pulse-labeled with radioactive leucine and the influence of hormones, serum, and amino acids on protein degradation was investigated during a subsequent chase period. Radioactive, immunoprecipitable phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) had a half-life of 5 to 6 hours which was not influenced by either N6, O2-dibutyryl adenosine 3':5'-monophosphate, dexamethasone, or insulin. The rate of phosphoenolpyruvate carboxykinase degradation was the same under steady state conditions as during the approach to a new steady state following hormonal induction or deinduction of the enzyme. Therefore, hormonal regulation of enzyme activity in vivo is the result of changes in the rate of enzyme synthesis. The rate of proteolysis for total cell proteins was increased under nutritional step-down conditions produced by the removal of serum or amino acids, or both, from the medium. This effect was completely prevented by insulin. Cycloheximide and puromycin, but not actinomycin D or cordycepin, inhibited protein degradation under step-down conditions but did not further decrease the basal rate of proteolysis measured in the presence of either insulin or serum plus amino acids. There was a good correlation between changes in proteolysis produced by serum and amino acids and changes in the degradation rate of phosphoenolpyruvate carboxykinase. Also, inhibition of proteolysis with cycloheximide and puromycin was accompanied by a decrease in the degradation rate for enzyme antigen. It is suggested that nutritional step-down leads either to the synthesis or activation of a proteolytic system.  相似文献   

4.
The effects of insulin, hydroxybutyrate, deoxypyridoxine, chlorpromazine, codeine, morphine, puromycin, and cycloheximide on the composition of the free amino acids in mouse and rat brain were tested. Significant changes occurred in a number of amino acids with most compounds tested; the largest was of alanine (a 50% increase with glucose, a 50% decrease with drugs); histidine was often increased, and the nonessential amino acids were mostly decreased. The pattern of changes was somewhat different in the mouse brain from that in the rat brain. Changes of amino acid levels may participate in the pharmacological action of a number of compounds.  相似文献   

5.
1. The accumulation of [1-(14)C]glycine and the uptake, accumulation, incorporation (into protein, lipid, glycogen) and oxidation of l-[1-(14)C]leucine in 5-day-old chick embryo hearts were investigated in vitro, and the effects of insulin, puromycin and 4-methyl-2-oxopentanoic acid on these processes were studied. 2. With glycine, the ratio of concentration of the labelled amino acid in the cell water to that in medium markedly exceeded unity. Insulin significantly increased this ratio. Puromycin did not prevent the insulin effect. 3. With leucine, the concentration ratio of the labelled amino acid between intracellular and extracellular water approached unity in the absence of puromycin and was doubled by its presence. In neither case did insulin substantially alter this ratio. The addition of 4-methyl-2-oxopentanoic acid had no effect in the absence of insulin, but produced a significant increase of the concentration ratio in the presence of the hormone. 4. Leucine uptake was increased slightly by insulin in all experimental conditions except in the presence of puromycin, where a more pronounced stimulation was observed. The hormone had no effect on the incorporation of the labelled amino acid into protein, but accelerated its oxidation to carbon dioxide; the latter effect was particularly evident in the presence of puromycin and disappeared after the addition of 4-methyl-2-oxopentanoic acid.  相似文献   

6.
High aminotransferase activities catalyzing the reactions between L-glutamate and L-glutamine and the aliphatic ketomonocarboxylic acids 2-ketoisocaproate, 2-ketocaproate, and 2-ketoisovalerate were observed in pancreatic B-cell mitochondria. While maximal rates of transamination with L-glutamate were observed in the presence of micromolar concentrations of keto acid, maximal rates of transamination with L-glutamine were recorded only in the presence of millimolar concentrations of keto acid. The insulin secretagogue 2-ketoisocaproate was the most effective transamination partner for L-glutamate, while the insulin secretagogue 2-ketocaproate was the most effective transamination partner for L-glutamine. Since B-cell mitochondria are well supplied with L-glutamate and L-glutamine, 2-ketoglutarate generation in the presence of these two neutral 2-keto acids may be an important prerequisite for their insulin secretory potency. High rates of transamination of 2-ketoglutarate were observed in the pancreatic B-cell mitochondria with the branched-chain amino acids L-leucine and L-valine, but not with L-norleucine. In connection with the ability of L-leucine to activate glutamate dehydrogenase, this high activity of the branched-chain amino acid aminotransferase in pancreatic B-cell mitochondria may provide an explanation for the insulin secretory potency of this amino acid.  相似文献   

7.
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.  相似文献   

8.
1. Incubation of washed cells of Staphylococcus aureus with [1-14C]glycerol results in the incorporation of glycerol into the lipid fraction of the cells. The rate of incorporation is increased by the presence of glucose and amino acids. The presence of amino acids increases incorporation into the fraction containing O-amino acid esters of phosphatidylglycerol. 2. Glycerol, incorporated into washed cells by incubation with glycerol, glucose and amino acids, is rapidly released from the lipid fraction when cells are incubated at low suspension densities in buffer. 3. Of nine amino acids tested, only lysine is significantly incorporated into the lipid fraction. The incorporation is increased by the presence of glycerol, glucose and other amino acids, especially aspartate and glutamate. 4. The incorporation of lysine is increased by the addition of puromycin at concentrations that inhibit protein synthesis. Chloramphenicol does not increase the incorporation of lysine but abolishes the enhancing effect of puromycin. 5. The enhancing effect of puromycin is accompanied by a similar increase in the incorporation of lysine into the fraction soluble in hot trichloroacetic acid. 6. Lysine is incorporated into the lipid fraction that contains O-amino acid esters of phosphatidylglycerol and corresponds in properties to phosphatidylglyceryl-lysine. 7. Lysine is rapidly released from the lipid of cells incubated in buffer only at low suspension densities. 8. Incubation of cells with the phosphatidylglyceryl-lysine fraction does not lead to the appearance of free lysine or to incorporation into the fraction insoluble in hot trichloroacetic acid.  相似文献   

9.
Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation and glycogen synthesis in mouse primary hepatocytes as well as in human hepatocarcinoma HepG2 cells. STAT3 knockdown protected insulin sensitivity from inhibition by amino acids. Amino acids stimulated the phosphorylation of STAT3 at Ser727, but not Tyr705. Replacement of the endogenous STAT3 with wild-type, but not S727A, recombinant STAT3 restored the ability of amino acids to inhibit insulin signaling, suggesting that Ser727 phosphorylation was critical for STAT3-mediated amino acid effect. Furthermore, overexpression of STAT3-S727D was sufficient to inhibit insulin signaling in the absence of excess amino acids. Our results also indicated that mammalian target of rapamycin was likely responsible for the phosphorylation of STAT3 at Ser727 in response to excess amino acids. Finally, we found that STAT3 activity and the expression of its target gene socs3, known to be involved in insulin resistance, were both stimulated by excess amino acids and inhibited by rapamycin. In conclusion, our study reveals STAT3 as a novel mediator of nutrient signals and identifies a Ser727 phosphorylation-dependent and Tyr705 phosphorylation-independent STAT3 activation mechanism in the modulation of insulin signaling.  相似文献   

10.
Prepubertal rat ovaries were incubated in medium containing the non-utilizable amino acids alpha-aminoisobutyric acid (AIB-14C) or 1-aminocyclo-pentane-carboxylic acid (cycloleucine-14C). The rate of uptake of the two amino acids was studied in the isolated ovaries after different incubation periods. Addition of 5mM cyclic AMP (cAMP) caused a slight stimulation of the AIB-transport but in higher concentrations (10-25 mM) an inhibition was noted. With dibutyrl cyclic AMP (dbcAMP) a dose-dependent increase was seen with 0.5-5 mM concentrations with no further effect of higher concentrations. Time course studies were performed with both AIB and cycloleucine in presence of 10 mM dbcAMP and increased uptake values were noted at each time studied (30-240 min). The phosphodiesterase inhibitor aminophyline in lower concentrations did not influence AIB-transport but 5-10 mM caused increased uptake values in the ovaries. The stimulatory action of dbcAMP on amino acid transport was augmented by a low concentration of aminophylline (0.5 mM). Experiments were in addition carried out in the presence of puromycin and under these circumstances it was still possible to enhance amino acid transport by addition of dbcAMP. The results are discussed in relation to earlier reported effects of gonadotropins on ovarian amino acid transport.  相似文献   

11.
1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0 degrees C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.  相似文献   

12.
Summary Low concentrations ofcycloheximide, sufficient to block net protein synthesis in growing normal and cancer cells, had no effect on protein turnover, i.e. either the incorporation of labeled amino acids from media lacking other amino acids essential for growth, or the loss to the medium of amino acids from prelabeled cells. At the concentrations that blocked growth, the rate of amino acid incorporation from complete medium was reduced to the “quo;turnover level,” i.e. the rate of incorporation seen in amino acid-deficient media. Protein turnover was inhibited only at higher concentrations of the inhibitor. Qualitatively similar results have been obtained with puromycin, anisomycin, emetin and tylocerebrine.  相似文献   

13.
Cell aggregates cultured from 7-day embryonic avian heart showed a spontaneous increase in A-system 2-aminoisobutyric acid transport when placed in protein-free and amino acid-free buffer for 3 hr. The apparent Vmax increased from 4.0 to 9.9 nmoles/μl of intracellular fluid volume/10 min in 3 hr. l-Proline (5 mM), an amino acid transported primarily by the A system, prevented this rise, but l-phenylalanine, primarily an L-system substrate, had no effect. Actinomycin, puromycin, and cycloheximide (55 μM) also prevented the time-dependent increase in transport. In contrast, cell aggregates cultured from 14-day embryonic heart exhibited a decrease in apparent Vmax during the 3-hr incubation, from 8.3 to 3.3 nmoles/μl of intracellular volume/10 min. l-Proline, but not l-phenylalanine, enhanced this decrease in A-system transport. The percentage proline inhibition of transport was reduced by actinomycin or cycloheximide (55 μM) at both ages. Insulin stimulated A-system transport at identical half-maximal concentrations of 18 nM at 7 and 14 days of embryonic development. In the presence of cycloheximide at 7 days of age, insulin prolonged the half-life of transport activity twofold. However, at 14 days, cycloheximide reduced the insulin response by 88% [Elsas, L. J., Wheeler, F. B., Danner, D. J., and DeHaan, R. L. (1975). J. Biol. Chem.250, 9381–9390]. l-Proline or actinomycin reduced both basal and insulin-stimulated transport by 7-day cell aggregates, but neither reduced the percentage insulin stimulation. We conclude that inherent developmental control(s), A-system amino acids, and insulin regulated the maximal velocity of A-system transport by controlling the biological turnover of transport protein(s). l-Proline decreased the existing synthesis of transport protein(s) at both ages. The predominant effect of insulin shifted from a posttranslational level at 7 days to a synthetic level by 14 days of embryonic development. Seven-day cell aggregates spontaneously increased synthesis in the absence of A-system amino acids, but 14-day cell aggregates required hormonal stimulation to shift the balance from degradation to synthesis of transport protein(s).  相似文献   

14.
1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicated by an increase in all four of these constituents to or above control values. 3. Spermidine content was increased in the livers of diabetic rats, despite the decrease in RNA, but it was further increased by insulin treatment. Spermine content was decreased by diabetes, but was unchanged by insulin treatment. Thus the ratio spermidine/spermine in the adult diabetic rat was more typical of that seen in younger rats, whereas insulin treatment resulted in a ratio similar to that seen in rapidly growing tissues. 4. Ornithine decarboxylase activity was variable in the diabetic rat, showing a positive correlation with endogenous ornithine concentrations. This correlation was not seen in control or insulin-treated rats. Insulin caused a significant increase in ornithine decarboxylase activity relative to control or diabetic rats. 5. S-Adenosylmethionine decarboxylase activity was increased approx. 2-fold by diabetes and was not further affected by insulin. 6. Hepatic concentrations of the glucogenic amino acids, alanine, glutamine and glycine were decreased by diabetes. Their concentrations and that of glutamate were increased by injection of insulin. Concentrations of ornithine, proline, leucine, isoleucine and valine were increased in livers of diabetic rats and were decreased by insulin. Diabetes caused a decrease in hepatic concentration of serine, threonine, lysine and histidine. Insulin had no effect on serine, lysine and histidine, but caused a further fall in the concentration of threonine.  相似文献   

15.
In neonatal pigs, the feeding-induced stimulation of protein synthesis in skeletal muscle, but not liver, can be reproduced by insulin infusion when essential amino acids and glucose are maintained at fasting levels. In the present study, 7- and 26-day-old pigs were studied during 1) fasting, 2) hyperinsulinemic-euglycemic-euaminoacidemic clamps, 3) euinsulinemic-euglycemic-hyperaminoacidemic clamps, and 4) hyperinsulinemic-euglycemic-hyperaminoacidemic clamps. Amino acids were clamped using a new amino acid mixture enriched in nonessential amino acids. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. In 7-day-old pigs, insulin infusion alone increased protein synthesis in various skeletal muscles (from +35 to +64%), with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as cardiac muscle (+50%), skin (+34%), and spleen (+26%). Amino acid infusion alone increased protein synthesis in skeletal muscles (from +28 to +50%), also with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as liver (+27%), pancreas (+28%), and kidney (+10%). An elevation of both insulin and amino acids did not have an additive effect. Similar qualitative results were obtained in 26-day-old pigs, but the magnitude of the stimulation of protein synthesis by insulin and/or amino acids was lower. The results suggest that, in the neonate, the stimulation of protein synthesis by feeding is mediated by either amino acids or insulin in most tissues; however, the feeding-induced stimulation of protein synthesis in skeletal muscle is uniquely regulated by both insulin and amino acids.  相似文献   

16.
Insulin-induced alterations in amino acid metabolism in the fetal lamb   总被引:1,自引:0,他引:1  
To investigate the role of insulin in modulation of fetal amino acid metabolism, insulin infusions were performed in 10 chronically-catheterized fetal lambs. Fetal insulin infusion caused a dose related fall in the arterial blood concentrations of 13 of 15 amino acids studied as well as a 15-25% decrease in total amino acid concentration. Fetal lambs exhibited a biphasic response of umbilical total amino acid uptake when compared to fetal blood insulin concentration, i.e., at achieved fetal insulin concentrations less than 100 microU/ml, umbilical uptake of 9 specific amino acids as well as summed amino acid uptake from the umbilical circulation were depressed, but at insulin concentrations of 100-350 microU/ml, amino acid uptakes were similar to or above control values. Insulin infusion also caused a drastic diminution in the rate of fetal urea excretion. These findings suggest that insulin acts in the fetus to depress amino acid catabolism, thus altering amino acid extraction and uptake. Depressed protein catabolism with or without enhanced amino acid uptake would have the theoretical effect of stimulation of net protein synthesis with a shift toward use of nonprotein substrates for energy purposes.  相似文献   

17.
1. The effects of insulin, glucagon and dexamethasone on the amino acid consumption by primary cultures of rat hepatocytes were studied in a medium containing all essential amino acids or in those deficient in some essential or nonessential amino acids. 2. The cells which were cultured in a medium containing all the essential amino acids responded to insulin by enhancing the consumption of amino acids and augmenting protein synthesis. 3. However, the cells did not respond to insulin significantly when they were cultured in a medium deficient in lysine or some other essential amino acids. 4. The results suggest that some essential amino acid deficiency impairs the transmission of the signal of insulin to the site of the metabolic changes induced by the hormone.  相似文献   

18.
1. Isolated chick embryo heart cells were used to investigate the mode of action of insulin on the transport of three naturally occurring amino acids: l-proline, l-serine and glycine. Initial velocities of uptake were measured over a period of 5min with an 80-fold range of amino acid concentration. Corrections for amino acid diffusion, incorporation into protein and conversion into carbon dioxide were introduced. 2. The uptake processes approximated Michaelis-Menten kinetics within definite ranges of amino acid concentrations. A single transport system for proline and at least two transport systems for serine and glycine were detected. 3. The kinetic effects of insulin on transport systems for the amino acids tested were consistent with an acceleration of the maximal velocity of the process, without substantial changes in substrate concentration for half-maximal transport velocity. 4. These hormonal effects were not essentially altered by the corrections for amino acid incorporation into protein and conversion into carbon dioxide.  相似文献   

19.
The effect of amino acids, in concentrations corresponding to those found in the portal vein of rats given a high-protein diet, was investigated on the activity of system A amino acid transport in hepatocytes from fed rats. Amino acids counteracted the induction of system A by insulin or glucagon. This effect was observed at all concentrations of hormones tested, up to 1 microM. Amino acids did not affect the basal cyclic AMP concentration in hepatocytes, or the large rise in cyclic AMP elicited by glucagon. The reversal of system-A induction was observed at relatively low concentration of amino acids, corresponding to plasma values reported in rats given a basal diet. Amino acids were separately tested: substrates of system A were particularly efficient, but so were glutamine and histidine. Non-metabolizable substrates of system A, such as 2-aminoisobutyrate, were also inhibitory, suggesting that a part of the effect of amino acids is independent of their cellular metabolism. Provision of additional energy substrates such as lactate and oleate did not affect induction of system A or the inhibitory effects of amino acids. Thus amino acids do not act by serving as an energy source and by maintaining the integrity of hepatocytes. Inhibition of mRNA synthesis by actinomycin practically abolished the effect of amino acids on the induction of system A by glucagon. The results suggest that amino acids may promote the synthesis of protein(s) affecting the activity of system A either directly at the carrier unit or at an intermediate stage of its emergence.  相似文献   

20.
《Biochimie》1987,69(5):475-483
Nearly all tRNA molecules in previtellogenic oocytes of Xenopus laevis are included in nucleoprotein particles sedimenting at 42S. The tRNA-binding sites of these particles have several properties in common with those of the ribosomes. This suggests that the 42S particles might behave like unprogrammed ribosomes and be the site of a template-independent polymerization of amino acids. We expected this reaction to be insensitive to protein synthesis inhibitors, such as cycloheximide and puromycin. We found that these antibiotics almost completely inhibit the incorporation of labeled amino acids into protein, when added to the incubation medium of whole ovaries or free oocytes. In cell-free extracts of ovaries, the incorporation of amino acids is partially insensitive to cycloheximide and puromycin. When such extracts are fractionated by sucrose density centrifugation and incubated with ATP, a major peak of amino acid incorporation can be detected, which nearly coincides with the 42S particle peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号