首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wines containing high levels of biogenic amines were investigated for the presence of tyramine-producing strains. Two different Lactobacillus brevis (IOEB 9809 and IOEB 9901) able to produce the amine were isolated. None of the isolated strains identified as Oenococcus oeni formed tyramine. In addition, other Lact. brevis and Lact. hilgardii strains from our collection (IOEB) and the American Type Culture Collection (ATCC) were strong tyramine producers. Lactobacillus brevis IOEB 9809 and Lact. hilgardii IOEB 9649 were found to produce tyramine and phenylethylamine simultaneously. The conditions that can influence tyramine formation in wine were evaluated for three strains of Lact. brevis (IOEB 9809 and IOEB 9901) and Lact. hilgardii (IOEB 9649). Tyrosine was the major factor affecting tyramine formation and was enhanced by the presence of sugars, mainly glucose. Tyrosine decarboxylase (TDC) activity greatly depended on the presence of the precursor, which suggested that tyrosine induced the TDC system. These results indicate that Lactobacillus could be the lactic acid bacteria responsible for tyramine production in wine.  相似文献   

2.
Hydroxycinnamic acids and their derivatives occur naturally in grape juice and wine. To assess their potential as natural preservatives the effect of caffeic, coumaric and ferulic acids on the growth of three wine-spoilage strains of Lactobacillus collinoides and one of Lact. brevis was studied in acid tomato broth containing 5% ethanol at pH 4.8. At concentrations of 500 and 1000 mg l-1, all three compounds markedly inhibited growth; coumaric and ferulic acids were more effective than caffeic acid. At a concentration of 100 mg l-1, all compounds stimulated growth. In general, the strains of Lact. collinoides were more susceptible both to inhibition and stimulation by the hydroxycinnamic acids than was the strain of Lact. brevis. The possible influence of hydroxycinnamic acids on the malolactic fermentation of wine is discussed.  相似文献   

3.
AIMS: Species-specific PCR was applied to identify Lactobacillus brevis and the sensitivity and the specificity of the protocol were determined. METHODS AND RESULTS: Strains of Lact. brevis obtained from foods, particularly dairy products, and various strain collections, were identified by PCR using primers which amplified a 1340 bp fragment within the 16S rRNA gene. The PCR product was obtained after amplification of all the Lact. brevis strains tested; the size of the amplicon was as expected. No PCR products were observed after amplification from DNA of several lactic acid bacteria (LAB) species. CONCLUSIONS: A PCR method was optimized to identify Lact. brevis. The protocol was highly efficient and sensitive. SIGNIFICANCE AND IMPACT OF THE STUDY: Conventional phenotypic methods often lead to ambiguous identification of LAB species belonging to Lact. brevis. The proposed protocol is sensitive, specific, and can be applied to total DNA extracted by use of chelating matrix with loss of neither sensitivity nor specificity.  相似文献   

4.
The production of a two-layer composite biocatalyst for immobilization of two different microorganisms for simultaneous alcoholic and malolactic fermentation (MLF) of wine in the same bioreactor is reported. The biocatalyst consisted of a tubular delignified cellulosic material (DCM) with entrapped Oenococcus oeni cells, covered with starch gel containing the alcohol resistant and cryotolerant strain Saccharomyces cerevisiae AXAZ-1. The biocatalyst was found effective for simultaneous low temperature alcoholic fermentation resulting to conversion of malic acid to lactic acid in 5 days at 10 °C. Improvement of wine quality compared with wine fermented with S. cerevisiae AXAZ-1 immobilized on DCM was attributed to MLF as well as to increased ester formation and lower higher alcohols produced at low fermentation temperatures (10 °C) as shown by GC and headspace SPME GC/MS analysis. Scanning electron microscopy showed that the preparation of a three-layer composite biocatalyst is also possible. The significance of such composite biocatalysts is the feasibility of two or three bioprocesses in the same bioreactor, thus reducing production cost in the food industry  相似文献   

5.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

6.
The naturally occurring complex organic acids, chlorogenic acid, gallic acid and quinic acid, at concentrations of 100, 500 and 1000 mg l-1 were evaluated for effects on the growth of three spoilage strains of Lactobacillus collinoides and one of Lact. brevis in acid tomato broth containing 5% (v/v) ethanol at pH 4.8. During early stages of growth, all the complex acids at each concentration stimulated growth of Lact. collinoides but not of Lact. brevis. During stationary phase, chlorogenic and gallic acids produced greater cell densities of all strains, whereas quinic acid generally had less effect. The presence of these complex acids in fruit products may increase the requirement for added preservative in order to prevent spoilage by certain strains of lactic acid bacteria.  相似文献   

7.
Entrapment of Oenococcus oeni into a polymeric matrix based on polyvinyl alcohol (PVA) (Lentikats®) was successfully used to get a better development of malolactic fermentation (MLF) in wine. The incubation of immobilized cells in a nutrient medium before starting the MLF, did not improve the degradation of malic acid. In only one day, 100% of conversion of malic acid was achieved using a high concentration of immobilized cells (0.35 g gel/ml of wine with a cell‐loading of 0.25 mg cells/mg of gel). While a low concentration of 0.21 g gel/ml of wine (cell‐loading of 0.25 mg cells/mg of gel) needed 3 days to get a reduction of 40%. The entrapped cells could be reused through six cycles (runs of 3 days), retaining 75% of efficacy for the conversion of malic acid into lactic acid. The immobilized cells in PVA hydrogels gave better performance than free cells because of the increase of the alcohol toleration. Consequently, the inhibitory effect of ethanol for developing MLF could be reduced using immobilized cells into PVA hydrogels. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

8.
Washed cell suspensions of Leuconostoc oenos catalysed the degradation of L-malic acid to L-lactic acid. Cell suspensions of 1010 cfu ml-1 degraded 90–95% of the malic acid in a buffer assay system and in wine within 30 min. A reaction time of 6 h was needed to obtain the same extent of degradation with suspensions of 109 cfu ml-1. With a reaction period of 6 h and an initial malic acid concentration of 3 g 1-1, reaction variables of pH 2.5-4.0, temperature 10–30°C, ethanol up to 15%, and L-lactic acid up to 4 g 1-1 did not decrease the degradation of malic acid to below 90–95%. Total SO2 at 100 mg 1-1 decreased the degradation of malic acid to 80%. The degradation (%) of malic acid was decreased when the concentration of malic acid was decreased below 2 g 1-1. The results indicate the prospect of using high densities of Leuc. oenos cells in membrane bioreactor systems for the rapid, continuous, deacidification of wine.  相似文献   

9.
Batch and continuous production of high fructose syrup from Jerusalem artichoke tubers has been studied using yeast cells immobilized in open pore gelatin matrix. In a batch reactor, the hydrolysis was 93% (d-fructose/d-glucose = 90/10) and 42 mg d-fructose per ml was produced from the artichoke tuber extract by immobilized cells in 3 h. The same immobilized cells were recycled and used repeatedly for 10 batch cycles starting with fresh juice at the beginning of each cycle. It was found that immobilized cells were extremely stable and the percent hydrolysis was almost constant for all 10 batch cycles. In a continuous reactor using an immobilized cell concentration of 65.7 g (dry wt) l?1 of total working bioreactor volume, the percent hydrolysis was found to remain constant at ~100% at dilution rates <1.26 h?1, but beyond that it decreased. Volumetric productivity attained its maximum value at D = 2.08 h?1 and was found to be 100 g l?1 h?1. This was achieved at a feed sugar conversion of 80%. At 90% conversion and D = 1.66 h?1, the productivity was found to be 90 g l?1 h?1. Continuous operation of the immobilized cell bioreactor at a constant dilution rate of 1.65 h?1 for 240 h resulted in only 2% loss of original activity.  相似文献   

10.
One hundred and thirty four lactic acid bacterial strains isolated during the 96-h period of cassava fermentation for fufu production were identified. The spectrum and proportion of the strains include Lactobacillus plantarum , 81%; Leuconostoc mesenteroides , 16%; Lact. cellobiosus , 15%; Lact. brevis , 9%; Lact, coprophilus , 5%; Lact. lactis , 4%; Leuc. lactis , 3% and Lact. bulgaricus , 1%. The isolates were characterized into strains. The succession among the lactic isolates was established. Lactobacillus plantarum was identified as the most dominant lactic acid bacterial strain involved in the fermentation.  相似文献   

11.
Three cultures immobilized by entrapping within alginate gel beads and packed in near-horizontal acrylic columns (15.0° angle) were used for alcohol/malolactic fermentation of grape must. Immobilized cells of Saccharomyces cerevisiae spp. chablis were placed in the 1st column, S. cerevisiae cells (an alcohol-sucrose-tolerant yeast) in the 2nd and the Lactobacillus delbrueckii cells in the 3rd column. Grape must with different levels of sugar(s), were each fed to the bioreactor columns at dilution rate of 0.74 h−1 and recycled at 37.0C. The percent fermentation efficiency and yield using the 1st and 2nd columns for grape must containing 33.3% sugar(s) were 92.9 and 91.5%, respectively, and the wine had 15.5% alcohol after 23 cycles (∼ 50 h fermentation). The viability of the immobilized yeast cells in the alginate gel-bead was 84%± 4.0. Immobilized Lactobacillus delbrueckii cells were then added to the 3rd column (in series 37.0C) and the three cultures resulted in alcohol/malolactic fermentation of the grape must, evidenced by the high level of alcohol formed and simultaneous transformation of malic to lactic acid. Sensory evaluation of the wine scored high (7.8 ± 2.0 based on a value of 10.0) and indicated the potential of using multiple immobilized cells of two specific yeast cultures and a malolactic Lactobacillus for wine production.  相似文献   

12.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

13.
Summary A simple and efficient method of conversion of wheat starch B to ethanol was investigated. Employing a two-stage enzymatic saccharification process, 95% of the wheat starch was converted to fermentable sugars in 40 h. From 140 g/l total sugars in the feed solution, 63.6 g/l ethanol was produced continuously with a residence time of 3.3 h in a continuous dynamic immobilized biocatalyst bioreactor by immobilized cells ofSaccharomyces cerevisiae. The advantages and the application of this bioreactor to continuous alcoholic fermentation of industrial substrates are presented.  相似文献   

14.
Phenol bioconversion by Pseudomonas stutzeri OX1 using either free or immobilized cells was investigated with the aim of searching for optimal operating conditions of a continuous bioconversion process. The study was developed by analyzing: (a) free-cell growth and products of phenol bioconversion by batch cultures of P. stutzeri; (b) growth of P. stutzeri cells immobilized on carrier particles; (c) bioconversion of phenol-bearing liquid streams and the establishment and growth of an active bacterial biofilm during continuous operation of an internal-loop airlift bioreactor. We have confirmed that free Pseudomonas cultures are able to transform phenol through the classical meta pathway for the degradation of aromatic molecules. Data indicate that bacterial growth is substrate-inhibited, with a limiting phenol concentration of about 600 mg/L. Immobilization tests revealed that a stable bacterial biofilm can be formed on various types of solid carriers (silica sand, tuff, and activated carbon), but not on alumina. Entrapment in alginate beads also proved to be effective for P. stutzeri immobilization. Continuous bioconversion of phenol-bearing liquid streams was successfully obtained in a biofilm reactor operated in the internal-circulation airlift mode. Phenol conversion exceeded 95%. Biofilm formation and growth during continuous operation of the airlift bioreactor were quantitatively and qualitatively assessed.  相似文献   

15.
The excretion of citrulline, a precursor of carcinogenic ethyl carbamate, formed from arginine degradation by malolactic bacteria in wine is of toxicological concern. The arginine metabolism of resting cells of Lactobacillus buchneri CUC-3 and Oenococcus oeni Lo1l1 was examined. The citrulline excretion rate was found to be linearly correlated to the arginine degradation rate. It was possible to calculate an arginine to citrulline conversion ratio which could be used to predict the amount of citrulline expected after the degradation of a known quantity of arginine. The conversion ratios determined in this study were similar to data calculated from other authors for fermentations in wine and ranged between 4.0% and 7.7%. Ribose, fructose and glucose inhibited the degradation of arginine in Lact. buchneri CUC-3, and inhibition of arginine degradation by glucose correlated with higher arginine to citrulline conversion ratios. The work presents new results of arginine metabolism in malolactic bacteria and gives starting points for investigations in wine.  相似文献   

16.
 The production of anthraquinones by Frangula alnus Mill. plant cells was used as a model system to evaluate the performance of a liquid-liquid extractive product-recovery process. The shake flask experiments have shown higher production of anthraquinones in cell suspension and flask cultures of calcium-alginate-immobilized cells when silicone oil was incorporated into the medium, compared to a control without silicone oil. An external-loop air-lift bioreactor, developed and designed for the production and simultaneous extraction of extracellular plant cell products, was regarded as a four-phase system, with dispersed gas, non-aqueous solvent and calcium-alginate-immobilized plant cells in Murashige and Skoog medium. Continuous extraction of anthraquinones by silicone oil and n-hexadecane inside the bioreactor resulted in 10–30 times higher cell productivity, compared to that of immobilized cells in a flask. Based on the mixing pattern, immobilized biocatalyst extraparticle and intraparticle diffusional constraints and the kinetics of growth, substrate consumption and product formation, a mathematical model was developed to describe the time course of a batch plant cell culture. The model showed satisfactory agreement with four sets of shake flask experiments and three bioreactor production cycles. Received: 18 March 1994/Received revision: 20 September 1994/Accepted: 28 September 1994  相似文献   

17.
Prevention of growth in wheat bread for more than 6 d of approximately 106 rope-producing Bacillus subtilis spores per gram of dough was achieved by addition of propionic or acetic acids at levels of 0·10% v/w (based on flour weight), or by addition of 15% sour dough fermented with Lactobacillus plantarum C11, Lact. brevis L62, Lact. plantarum ('vege-start 60'), Lact. plantarum (ch 20), Lact. maltaromicus (ch 15), or the commercial sour dough starter culture, Lact. sanfrancisco L99. These cultures resulted in an amount of total titratable acids above 10 in the sour dough and a pH value below 4·8 in the final bread. Bacteriocin-producing lactic acid bacteria added as starter cultures in wheat dough and nisin (Nisaplin) at levels up to 100 p.p.m. g−1 flour had no effect against B. subtilis and B. licheniformis strains, despite the fact that nisin-producing strains of Lactococcus lactis ssp. lactis among 186 strains of lactic acid bacteria had demonstrated inhibitory activity against B. subtilis and B. licheniformis in an agar spot assay.  相似文献   

18.
Antibacterial polypeptides of Lactobacillus species   总被引:7,自引:5,他引:2  
Twelve of 79 strains of the genus Lactobacillus , mainly isolated from plants or fermenting material, were found to inhibit at least one of the nine indicator strains of the species Lact. brevis, Pediococcus damnosus and Leucanostoc oenos . The antimicrobial activities from Lact. brevis B 37 and Lact. casei B 80 were caused by polypeptides detectable in the culture liquids. They are bacteriocins with a narrow antimicrobial spectrum. Brevicin 37 from Lact. brevis B 37 was active against many lactic acid bacteria and Nocardia corallina , whereas caseicin 80 from Lact. casei B 80 inhibits only one other strain of Lact. casei . Brevicin 37 is stable at 121C, caseicin 80 is inactivated above 60C, and both are inactivated under alkaline conditions.  相似文献   

19.
Continuous production of propionate from whey lactose by Propionibacterium acidipropionici immobilized in a novel fibrous bed bioreactor was studied. In conventional batch propionic acid fermentation, whey permeate without nutrient supplementation was unable to support cell growth and failed to give satisfactory fermentation results for over 7 days. However, with the fibrous bed bioreactor, a high fermentation rate and high conversion were obtained with plain whey permeate and de-lactose whey permeate. About 2% (wt/vol) propionic acid was obtained from a 4.2% lactose feed at a retention time of 35 to 45 h. The propionic acid yield was approximately 46% (wt/vol) from lactose. The optimal pH for fementation was 6.5, and lower fermentation rates and yields were obtained at lower pH values. The optimal temperature was 30 degrees C, but the temperature effect was not dramatic in the range of 25 to 35 degrees C. Addition of yeast extract and trypticase to whey permeate hastened reactor startup and increased the fermentation rate and product yields, but the addition was not required for long-term reactor performance. The improved fermentation results with the immobilized cell bioreactor can be attributed to the high cell density, approximately 50 g/L, attained in the bioreactor, Cells were immobilized by loose attachement to fiber surfaces and entrapment in the void spaces within the fibrous matrix, thus allowing constant renewal of cells. Consequently, this bioreactor was able to operate continuously for 6 months without encountering any clogging, degeneration, or contamination problems. Compared to conventional batch fermentors, the new bioreactor offers many advantages for industrial fermentation, including a more than 10-fold increase in productivity, acceptance of low-nutrient feedstocks such as whey permeate, and resistance to contamination. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
A bioreactor with associated crystallizer for the accumulation of a highly concentrated slurry product has been developed and investigated. The transformation of Ca-fumarate to Ca-L-malate by the action of the fumarase of immobilized Brevibacterium flavum cells focussed on the performance of this newly-devised bioreactor-crystallizer system.

The following results were obtained

(1) The fumarase reaction in the bioreactor proceeded at a rate that was first-order in apparent substrate concentration.

(2) The reaction rate increased with the addition of Na2-fumarate to the substrate solution.

(3) The reaction rate was independent of the substrate circulation rate and the initial substrate concentration in the crystallizer.

(4) Fumarase activity of immobilized B. flavum cells was stable after 10 repeated uses over a period of 10 days.

(5) Maximum concentration of the product, final conversion ratio of the substrate and the productivity of the bioreactor-crystallizer system were much higher than those for a conventional bioreactor using solubilized Ca-fumarate as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号