首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.  相似文献   

2.
Redox titrations of the iron-sulphur clusters in fumarate reductase purified from Escherichia coli, monitored by ESR spectroscopy, identified three redox events, similar to those observed in other fumarate reductases and succinate dehydrogenases: Centre 1, a [2Fe-2S] cluster, at g = 2.03, 1.93, appeared on reduction with Em = -20 mV. Centre 3, probably a [3Fe-xS] cluster, at g = 2.02 appeared in the oxidized state with Em = -70 mV. Centre 2 has been observed as an increase in the electron-spin relaxation of Centre 1. It titrates as an n = 1 species with Em = -320 mV, but in our hands did not appear to contribute significant intensity to the g = 2.03, 1.93 signal. It therefore appears to be an additional centre which undergoes spin-spin interaction with Centre 1. The reduction of Centre 2 coincided with the appearance of an extremely broad ESR spectrum, observed at temperatures below 20 K, with features at g = 2.17, 1.9, 1.68. The broad signal was observed in both soluble and membrane-bound preparations. Its midpoint potential was -320 mV. Its integrated intensity was approximately equal to that of Centre 1, if its broad outer wings were taken into account. Consideration of the ESR properties of this signal, together with the amino acid sequence of the frdB subunit of the enzyme, indicates that Centre 2 is a [4Fe-4S] cluster which, in its reduced state, enhances the spin relaxation of the [2Fe-2S] Centre 1.  相似文献   

3.
Potentiometric study of cytochrome c1aa3 from Thermus thermophilus   总被引:1,自引:0,他引:1  
We have examined the redox behavior of the cytochrome c1aa3 complex from Thermus thermophilus. In potentiometric titrations the cytochrome c behaves as an independent center having n = 1 and E = 205 mV (NHE). Under the assumption that the individual centers equilibrate independently in this experiment, changes in the absorption band at 603 nm have been resolved into two components: cytochrome a (n = 1, Em = 270 mV, 60% spectral contribution) and cytochrome a3 (n = 2, Em = 360 mV, 40% spectral contribution). The n = 2 process was attributed to strong chemical coupling between cytochrome a3 and CuB. The enzyme was also titrated with a mixture of NADH and PMS, and the results are shown not to conform to a model of intramolecular equilibrium according to the equilibrium constants obtained from the potentiometric titration. It is suggested that a conformational equilibrium within the complex may control electron transfer between cytochromes a and a3.  相似文献   

4.
The redox properties of the iron-sulfur centers of the two nitrate reductases from Escherichia coli have been investigated by EPR spectroscopy. A detailed study of nitrate reductase A performed in the range +200 mV to -500 mV shows that the four iron-sulfur centers of the enzyme belong to two classes with markedly different redox potentials. The high-potential group comprises a [3Fe-4S] and a [4Fe-4S] cluster whose midpoint potentials are +60 mV and +80 mV, respectively. Although these centers are magnetically isolated, they are coupled by a significant anticooperative redox interaction of about 50 mV. The [4Fe-4S]1+ center occurs in two different conformations as shown by its composite EPR spectrum. The low-potential group contains two [4Fe-4S] clusters with more typical redox potentials (-200 mV and -400 mV). In the fully reduced state, the three [4Fe-4S]1+ centers are magnetically coupled, leading to a broad featureless spectrum. The redox behaviour of the high-pH EPR signal given by the molybdenum cofactor was also studied. The iron-sulfur centers of the second nitrate reductase of E. coli, nitrate reductase Z, exhibit essentially the same characteristics than those of nitrate reductase A, except that the midpoint potentials of the high-potential centers appear negatively shifted by about 100 mV. From the comparison between the redox centers of nitrate reductase and of dimethylsulfoxide reductase, a correspondence between the high-potential iron-sulfur clusters of the two enzymes can be proposed.  相似文献   

5.
Pyrococcus furiosus ferredoxin contains a single [4Fe-4S] that exists in both S = 1/2 (20%) and S = 3/2 (80%) ground states in the reduced protein. We report here on the temperature-dependent potentiometric properties of the two spin forms, their stability, and on the structural features that differentiate them. The midpoint potential (Em) of the cluster in either spin state was determined at -365 mV (30 degrees C, pH 8.0). By rapidly freezing samples for EPR analyses, it was shown that the Em values of both spin states appear to change by -1.7 mV/degrees C over the range 20 degrees-80 degrees C, and by -6 mV/degrees C between 80 and 89 degrees C. The Em values and the relative amounts of the S = 1/2 and S = 3/2 forms of the cluster were unaffected by pH (6.8-10.5), even at 85 degrees C, and were unchanged by the presence of NaCl (1.0 M), sodium dodecyl sulfate (10%, w/v) or ethylene glycol (50%, v/v), even at 80 degrees C. The S = 1/2 form of the [4Fe-4S]+ cluster was found to exhibit a strongly coupled 1H ENDOR resonance (A = 22 MHz) that was exchangeable with the solvent. Such a large coupling has not been observed in any other iron-sulfur protein. Since a unique feature of this 4Fe-ferredoxin is that only 3 cysteinyl residues appear to be coordinated to the [4Fe-4S] cluster, the ENDOR data are consistent with an H2O molecule being a ligand to the unique Fe site. The S = 3/2 form of the [4Fe-4S]+ cluster exhibited a similar, strongly coupled 1H ENDOR resonance, but in this spin state it was not exchangeable with the solvent. This suggests that the [4Fe-4S]+ cluster exhibiting the S = 3/2, but not the S = 1/2 ground state, is "shielded" from the solvent, presumably by neighboring amino acid residues. In view of the pH dependence of the midpoint potential of the two spin states, the fourth ligand to the cluster and the source of the strongly coupled 1H ENDOR resonance is probably an OH- rather than H2O molecule.  相似文献   

6.
Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/- 3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/- 8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/- 5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/- 4 mV; E(2) = -259 +/- 5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual signal is assigned to the formation of a spin interacting state between the FMN semiquinone species and the reduced 2Fe-2S center. Reduction of DHODB using an excess of NADH or dihydroorotate produces EPR spectra that are distinct from those produced by dithionite. From potentiometric studies, the reduction of the 2Fe-2S center and the reduction of the FMN occur concomitantly. The study provides a detailed thermodynamic framework for electron transfer in this complex iron-sulfur flavoprotein.  相似文献   

7.
F Fritz  D A Moss  W M?ntele 《FEBS letters》1992,297(1-2):167-170
The redox and spectral characteristics of the 4-heme cytochrome c unit of the photochemical reaction center from Rhodopseudomonas viridis were studied by a combination of protein electrochemistry and spectroscopy using an ultra thin-layer spectroelectrochemical cell. Quantitative and reversible reduction of the high-potential and the low-potential hemes was performed in cyclic titrations to record the optical difference spectra in the alpha-band region. The titration of the absorbance from the high-potential hemes can be approximated with a sum of 2 Nernst functions with Em = 0.113 V and Em = 0.175 V. The corresponding titration of the absorbance from the low-potential hemes yielded Em = -0.257 V and Em = -0.175 V (all potentials quoted vs. Ag/AgC1/3 M KCl; add 0.208 V for potentials vs. standard hydrogen electrode). The high-potential hemes equilibrate rapidly and titrate identically for oxidative and reductive titrations. Under identical conditions, the low-potential hemes exhibit a hysteresis, thus indicating much slower equilibration with the applied potential. Cyclic titrations with increasing equilibration periods, however, indicate the disappearance of the hysteresis for equilibration periods approximately twice as long as for the high-potential hemes. We take this as evidence for a slower internal equilibration, but against a cooperativity of the low-potential hemes as observed for other multi-heme cytochromes.  相似文献   

8.
The cytochrome-bo quinol oxidase of Escherichia coli contains a high-spin b-type heme (cytochrome o), a low-spin b-type heme (cytochrome b) and copper. The EPR signal from cytochrome o is axial high spin and when titrated potentiometrically gives a bell-shaped curve. The low-potential side of this curve (Em7 approx. 160 mV) corresponds to the reduction/oxidation of the cytochrome. The high-potential side (Em7 approx. 350 mV) is proposed to be due to reduction/oxidation of a copper center; in the CuII form tight cytochrome o-copper spin coupling results in a net even spin system and loss of the EPR spectrum. Optical spectra of the alpha-bands of the reduced cytochromes at 77 K show that cytochrome b has its maxima at 564 nm when cytochrome o is oxidized but that this shifts to 561 nm when cytochrome o (max. 555 nm) is reduced. Both a heme-copper (cytochrome o-CuII) and a heme-heme (cytochrome o-cytochrome b) interaction are indicated in this quinol oxidase. These results indicate that cytochrome-bo quinol oxidase has a binuclear heme-copper catalytic site and suggest striking structural similarity to subunit I of the cytochrome aa3 system.  相似文献   

9.
Periplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple. A [4Fe-4S]1+ cluster EPR signal developed over a range of potentials between 300 and -200 mV and was best fitted to two sequential Nernstian n=1 curves with midpoint redox potentials of +183+/-10 mV (FS1) and -51+/-10 mV (FS3) for the two [4Fe-4S]1+/2+ cluster couples. Upon further reduction, the observed signal intensity of the [4Fe-4S]1+ cluster decreases. This change in intensity can again be fitted to an n=1 Nernstian component with a midpoint potential (E(m)) of about -356 mV (FS2). It is considered likely that, at low redox potential (E(m) less than -300 mV), the remaining oxidized cluster is reduced (spin S=1/2) and strongly spin-couples to a neighbouring [4Fe-4S]1+ cluster rendering both centres EPR-silent. The involvement of both [3Fe-4S] and [4Fe-4S] clusters in electron transfer to the active site of the periplasmic SER was demonstrated by the re-oxidation of the clusters under anaerobic selenate turnover conditions. Attempts to detect a high-spin [4Fe-4S] cluster (FS0) in SerA at low temperature (5 K) and high power (100 mW) were unsuccessful. The Mo(V) EPR recorded at 60 K, in samples poised at pH 6.0, displays principal g values of g3 approximately 1.999, g2 approximately 1.996 and g1 approximately 1.965 (g(av) 1.9867). The dominant features at g2 and g3 are not split, but hyperfine splitting is observed in the g1 region of the spectrum and can be best simulated as arising from a single proton with a coupling constant of A1 (1H)=1.014 mT. The presence of the haem-b moiety in SerC was demonstrated by the detection of a signal at g approximately 3.33 and is consistent with haem co-ordinated by methionine and lysine axial ligands. The combined evidence from EPR analysis and sequence alignments supports the assignment of the periplasmic SER as a member of the Type II molybdoenzymes and provides the first spectro-potentiometric insight into an enzyme that catalyses a key reductive reaction in the biogeochemical selenium cycle.  相似文献   

10.
Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnetism and a novel type of hybrid [4Fe-2S-2O] cluster, which can attain four redox states. Genomic sequencing reveals that genes encoding putative hybrid-cluster proteins are present in a range of bacterial and archaeal species. In this paper we describe the isolation and spectroscopic characterization of the hybrid-cluster protein from Escherichia coli. EPR spectroscopy shows the presence of a hybrid cluster in the E. coli protein with characteristics similar to those in the proteins of anaerobic sulfate reducers. EPR spectra of the reduced E. coli hybrid-cluster protein, however, give evidence for the presence of a [2Fe-2S] cluster instead of a [4Fe-4S] cluster. The hcp gene encoding the hybrid-cluster protein in E. coli and other facultative anaerobes occurs, in contrast with hcp genes in obligate anaerobic bacteria and archaea, in a small operon with a gene encoding a putative NADH oxidoreductase. This NADH oxidoreductase was also isolated and shown to contain FAD and a [2Fe-2S] cluster as cofactors. It catalysed the reduction of the hybrid-cluster protein with NADH as an electron donor. Midpoint potentials (25 degrees C, pH 7.5) for the Fe/S clusters in both proteins indicate that electrons derived from the oxidation of NADH (Em NADH/NAD+ couple: -320 mV) are transferred along the [2Fe-2S] cluster of the NADH oxidoreductase (Em = -220 mV) and the [2Fe-2S] cluster of the hybrid-cluster protein (Em = -35 mV) to the hybrid cluster (Em = -50, +85 and +365 mV for the three redox transitions). The physiological function of the hybrid-cluster protein has not yet been elucidated. The protein is only detected in the facultative anaerobes E. coli and Morganella morganii after cultivation under anaerobic conditions in the presence of nitrate or nitrite, suggesting a role in nitrate-and/or nitrite respiration.  相似文献   

11.
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys204, Cys210, and Cys214 were individually replaced by Ser and in which Val207 was replaced by Cys were constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters were investigated. The FrdB Cys204Ser, Cys210Ser, and Cys214Ser mutations result in enzymes with negligible activity that have dissociated from the membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters, centers 3 and 2, respectively. In contrast, the FrdB Val207Cys mutation results in a functional membrane-bound enzyme that is able to support growth under anaerobic and aerobic conditions. However, EPR studies indicate that the indigenous [3Fe-4S]+,0 cluster (Em = -70 mV), center 3, has been replaced by a much lower potential [4Fe-4S]2+,+ cluster (Em = -350 mV), indicating that the primary sequence of the polypeptide determines the type of clusters assembled. The results of these studies afford new insights into the role of centers 2 and 3 in mediating electron transfer from menaquinol, the residues that ligate these clusters, and the intercluster magnetic interactions in the wild-type enzyme.  相似文献   

12.
Oxidation-reduction titrations of Azotobacter vinelandii cytochrome o + c4 and cytochrome o were performed with simultaneous potential and absorbance measurements under anaerobic conditions. Cytochrome c4 has a midpoint potential (Em, 7.4) of 260mV and purified cytochrome o has an Em, 7.4 of -18mV. Little change in the midpoint potential of cytochrome o was observed when titrated in the pH range 6.2--9.8.  相似文献   

13.
The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and M?ssbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.  相似文献   

14.
A flavoprotein from Rhodobacter capsulatus was purified as a recombinant (His)6-tag fusion from an Escherichia coli clone over-expressing the fprA structural gene. The FprA protein is a homodimer containing one molecule of FMN per 48-kDa monomer. Reduction of the flavoprotein by dithionite showed biphasic kinetics, starting with a fast step of semiquinone (SQ) formation, and followed by a slow reduction of the SQ. This SQ was in the anionic form as shown by EPR and optical spectroscopies. Spectrophotometric titration gave a midpoint redox potential for the oxidized/SQ couple of Em1 = +20 mV (pH 8.0), whereas the SQ/hydroquinone couple could not be titrated due to the thermodynamic instability of SQ associated with its slow reduction process. The inability to detect the intermediate form, SQ, upon oxidative titration confirmed this instability and led to an estimate of Em2 - Em1 of > 80 mV. The reduction of SQ by dithionite was significantly accelerated when the [2Fe-2S] ferredoxin FdIV was used as redox mediator. The midpoint redox potential of this ferredoxin was determined to be -275 +/- 2 mV at pH 7.5, consistent with FdIV serving as electron donor to FprA in vivo. FdIV and FprA were found to cross-react when incubated together with the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, giving a covalent complex with an Mr of approximately 60 000. Formation of this complex was unaffected by the redox states of the two proteins. Other [2Fe-2S] ferredoxins, including FdV and FdVI from R. capsulatus, were ineffective as electron carriers to FprA, and cross-reacted poorly with the flavoprotein. The possible function of FprA with regard to nitrogen fixation was investigated using an fprA-deleted mutant. Although nitrogenase activity was significantly reduced in the mutant compared with the wild-type strain, nitrogen fixation was apparently unaffected by the fprA deletion even under iron limitation or microaerobic conditions.  相似文献   

15.
The mid-point potentials of the Fe protein components (Ac2 and Ac2* respectively) of the Mo nitrogenase and V nitrogenase from Azotobacter chroococcum were determined in the presence of MgADP to be -450 mV (NHE) [Ac2(MgADP)2-Ac2*ox.(MgADP)2 couple] and -463 mV (NHE) [Ac2* (MgADP)2-Ac2*ox.(ADP)2 couple] at 23 degrees C at pH 7.2. These values are consistent with a flavodoxin characterized by Deistung & Thorneley [(1986) Biochem. J. 239, 69-75] with Em = -522 mV (NHE) being an effective electron donor to both the Mo nitrogenase and the V nitrogenase in vivo. Ac2*ox.(MgADP)2 and Ac2*ox.(MgADP)2 were reduced by SO2.- (formed by the predissociation of dithionite ion, S2O4(2-)) at similar rates, k = 4.7 X 10(6) +/- 0.5 X 10(6) M-1.s-1 and 3.2 X 10(6) +/- 0.2 X 10(6) M-1.s-1 respectively, indicating structural homology at the electron-transfer site associated with the [4Fe-4S] centre in these proteins.  相似文献   

16.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

17.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

18.
Using newer techniques for conducting and analyzing potentiometric titrations, we have studied the thermodynamic and spectral properties of cytochrome c1 in beef heart mitochondria. We find two species of cytochrome c1, both with n = 2 values for the number of electrons involved in their oxidation or reduction. One has an Em approximately 210 mV and a spectral peak near 555 nm and the other has an Em approximately 255 mV and a spectral peak nearer 553 nm. These Em values are pH-independent in the range of pH 6 to 8. The Em and n values of these two components are indistinguishable from those of two species of cytochrome aa3 (i.e. spectral feature of 605 nm).  相似文献   

19.
Polymorphonuclear leukocytes contain an oxidase system that can be activated to produce superoxide radicals and hydrogen peroxide. A nonmitochondrial b cytochrome, functioning in the generation of these oxygen species, has been purified to apparent homogeneity from human polymorphonuclear phagocytes. After solubilization of the cytochrome with Triton X-100, the cell extract was subsequently chromatographed on Blue Sepharose and Sephacryl S-300. The final preparation was maximally purified 170-fold with a specific content of 5.33 +/- 2.03 nmol mg-1 of protein (mean +/- S.D.; n = 7) and a yield of 21 +/- 13% (n = 5). The apparent molecular mass of the nondenatured cytochrome was estimated by gel filtration to be 235 kDa. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single polypeptide was found with a molecular mass of 127 kDa. From the pyridine hemochrome spectrum 1 protoheme IX/polypeptide was calculated. The light absorbance bands of the dithionite-reduced cytochrome were found to be at 558.5 (alpha), 529 (beta), and 426 nm (Soret), and that of the oxidized cytochrome at 413.5 nm. The difference absorbance coefficients are delta epsilon (426.5 - 440 nm) = 160.6 +/- 11 mM-1 cm-1 and delta epsilon (558.5 - 542 nm) = 29.3 +/- 2 mM-1 cm-1 (mean +/- S.D.; n = 5). Carbon monoxide binds to the cytochrome in a time-dependent fashion (maximum binding after 50-60 min). The midpoint potential of the solubilized nonpurified cytochrome is identical to the cytochrome in situ (Em7.0 = -218 +/- 7 mV (mean +/- S.D.; n = 5)). However, purified cytochrome b shows a significantly decreased midpoint potential, estimated at -407 +/- 18 mV (n = 4). The protein does not contain noncovalently bound FAD or FMN, and no spectral evidence was obtained for the presence of covalently bound flavin. Preliminary amino acid analysis of the cytochrome shows a high content of hydrophilic residues.  相似文献   

20.
Carbon monoxide dehydrogenase from Methanosarcina barkeri, purified to 95% homogeneity, contains 30 Fe, 2 Ni, 1 Zn, and 1 Cu (per alpha 2 beta 2 enzyme). Core extrusion experiments indicate 6 [4Fe-4S] clusters/tetramer, and electron paramagnetic resonance (epr) spectroscopy detects at least one of these clusters, in the reduced form, with apparent g values of 2.05, 1.94, and 1.90, and Em9.2-390 mV. A second epr signal, also seen in the reduced enzyme, has apparent g values of 2.005, 1.91, and 1.76, and Em9.2-35 mV. Two signals were seen in thionin-oxidized enzyme, one with a line shape suggestive of Cu(II), and the other resembling that of a [3Fe-4S] cluster. The enzymes nonphysiological substrate, CO, caused several spectral changes to the reduced enzyme, most notably a shift of the g = 1.76 feature to g = 1.73.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号