首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic production of L-serine   总被引:4,自引:0,他引:4  
Serine hydroxymethyltransferase (SHMT) in the form of crude extract form a recombinant strain of Klebsiella aerogenes was used to study the production of L-serine from glycine and formaldehyde (HCHO). SHMT activity linearly increased with temperature (30-50 degrees C). Addition of exogenous cofactors, tetrahydrofolic acid and pyridoxal-phosphate, significantly increased SHMT activity. The pH optimum of the SHMT catalyzed L-serine synthesis step was between 8.0 and 8.5. The K(m) for glycine was 11.6mM at 37 degrees C and pH 8.0. A 87% molar conversion of glycine to serine was obtained at equilibrium (37 degrees C, pH 8.0). Tetrahydrofolic acid was stabilized by maintaining the redox potential of the reaction solution below -330 mV through the addition of a reducing reagent such as beta-mercaptoethanol. SHMT stability was very sensitive to HCHO concentration. By carefully balancing the HCHO feed rate against the enzymatic bioconversion rate in order to keep HCHO concentration low, a serine titer of 160 g/L was achieved, the residual glycine concentration was reduced to 40 g/L, a 70% molar conversion of glycine with quantitative yield was obtained, and the overall serine productivity was 5.2 g/L/h.  相似文献   

2.
Enzymatic synthesis of L-cysteine   总被引:2,自引:0,他引:2  
O-Acetylserine sulfhydrase in the form of a crude extract from Salmonella typhimurium LT2 was used for the production of L-cysteine from L-O-acetylserine and sodium hydrosulfide at pH 7.0 and 25 degrees C. The two substrates have quite different pH stability relationships. O-Acetylserine readily rearranges to N-acetylserine and the rate of this O --> N acyl transfer reaction increases at higher pH, temperature, and concentration of O-acetylserine. On the other hand, sodium hydrosulfide is more soluble at a higher pH. A stirred-tank bioreactor with a continuous substrate feed was employed to overcome this problem. The O-acetylserine feed was stored at its saturation level (2.05M) at pH 5.0, and the sodium hydrosulfide feed was dissolved at 2.05-2.3M without pH adjustment (pH >/= 11.5). Both substrates were simultaneously introduced into the bioreactor. The performance of the bioreactor was optimized by employing an automatic feedback control system to regulate the concentration of O-acetylserine in the bioreactor. This feedback control system was based on the fact that as the bioconversion proceeds, protons are produced along with cysteine. A pH controller thus detected the decrease in pH and activated the substrate pumps. After mixing in the bioreactor, these two substrate solutions behaved as a base due to the high alkalinity of sodium hydrosulfide. Thus, substrate infusion started when the pH was lower than the set point, i.e., the reaction pH, and stopped when the pH was raised higher than the set point. The amount of substrate introduced was determined by the alkalinity of the mixture of the two substrates, which in turn was controlled by the concentration of sodium hydrosulfide. After optimizing the sodium hydrosulfide concentration and the substrate feed rate, the bioconversion gave a productivity of 3.6 g L-cysteine/h/g dry cell weight S. typhimurium, an L-cysteine titer of 83 g/L and a molar yield based on O-acetylserine of 94%.  相似文献   

3.
The appearance of sustained oscillations in bioreactor variables (biomass and nutrient concentrations) in continuous cultures of Saccharomyces cerevisiae indicates the complex nature of microbial systems, the inadequacy of current growth kinetic models, and the difficulties which may arise in bioprocess control and optimization. In this study we investigate continuous bioreactor behavior over a range of operating conditions (dilution rate, feed glucose concentration, feed ammonium concentration, dissolved oxygen, and pH) to determine the process requirements which lead to oscillatory behavior. We present new results which indicate that high feed ammonium concentrations may eliminate oscillations and that under oscillatory conditions ammonium levels are generally low and oscillatory as well. The effects of pH are complex and oscillations were only observed at pH values 5.5 and 6.5; no oscillations were observed at a pH of 4.5. Under our nominal operating conditions (feed glucose concentration 10 g/L, dilution rate 0.145 h(-1), feed ammonium concentration 0.0303M, dissolved oxygen level 50%, pH 5.5, and T = 30 degrees C) we found two possible final bioreactor states depending on the transient used to reach the nominal operating conditions. One of the states was oscillatory and characteristic of oxidative metabolism and the other was nonoscillatory and fermentative.  相似文献   

4.
Glycine and serine are two interconvertible amino acids that play an important role in C1 metabolism. Using 13C NMR and various 13C-labelled substrates, we studied the catabolism of each of these amino acids in non-photosynthetic sycamore cambial cells. On one hand, we observed a rapid glycine catabolism that involved glycine oxidation by the mitochondrial glycine decarboxylase (GDC) system. The methylenetetra- hydrofolate (CH2-THF) produced during this reaction did not equilibrate with the overall CH2-THF pool, but was almost totally recycled by the mitochondrial serine hydroxymethyltransferase (SHMT) for the synthesis of one serine from a second molecule of glycine. Glycine, in contrast to serine, was a poor source of C1 units for the synthesis of methionine. On the other hand, catabolism of serine was about three times lower than catabolism of glycine. Part of this catabolism presumably involved the glycolytic pathway. However, the largest part (about two-thirds) involved serine-to-glycine conversion by cytosolic SHMT, then glycine oxidation by GDC. The availability of cytosolic THF for the initial SHMT reaction is possibly the limiting factor of this catabolic pathway. These data support the view that serine catabolism in plants is essentially connected to C1 metabolism. The glycine formed during this process is rapidly oxidized by the mitochondrial GDC-SHMT enzymatic system, which is therefore required in all plant tissues.  相似文献   

5.
This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point.  相似文献   

6.
Serine production from methanol and glycine was tried using frozen-thawed resting cells of a methylotroph, Protomonas extorquens NR-1 under multi-variable controlled conditions. The conditions for l-serine formation were optimized at 30°C. The production of l-serine in 0.4% CaCl2 solution (initial pH 8.2) was the same as in 0.1 M Tris-HCl buffer (initial pH 8.3). Increasing the initial glycine concentration promoted l-serine formation. A high aeration rate decreased l-serine production. The optimum concentrations of dissolved oxygen and methanol were 0.5 ppm and 10 g/l, respectively. The highest l-serine, 24.9 g/l, was obtained at 24 h from 30.94 gl (as dry weight) resting cells using 100 g/l initial glycine with controlled pH. The relationship between the initial rate of l-serine formation and cell concentration indicated an unusual curve due to the effects of the added NaOH which was used for controlling the pH. In similar experiments without control of pH, a normal profile was observed with respect to the relationship between the initial rate of l-serine formation and cell concentration. The highest l-serine, 54.5 g/l, was obtained at 48 h by 36.4 g/l (as dry weight) resting cells. The yield (mol of l-serine/mol of added substrate) of l-serine from methanol and glycine were 8.3% and 39.3%, respectively. The selectivity of l-serine (mol of l-serine/mol of glycine consumed) was 67.9%. The stoichiometry of the maximum l-serine formation showed that the resting cells carried the highly active methanol dehydrogenase while serine transhydroxymethylase was rather low. Serine glyoxalate aminotransferase was not completely inhibited by the high concentration of glycine (about 68% of synthesized l-serine was detected in the supernatant.  相似文献   

7.
The reaction between dextran-dialdehyde, prepared by periodate oxidation, and glycine was examined in detail. In contrast to that of aldose with amino acids, the dialdehyde reaction proceeded very rapidly. Higher temperatures and pH were favorable for the reaction and the initial velocity was proportional to the reaction time and the concentration of dextran-dialdehyde. Although the dextran-glycine adduct was stable during the gel filtration step to remove excess glycine, the adduct was readily dissociated by 0.3 m HC1. Among the amino acids tested, histidine and glycine gave higher reactivity than lysine and arginine. This basic information is useful for condensation of dextran-dialdehyde with various proteins and enzymes.  相似文献   

8.
A novel and high‐rate anaerobic sequencing bath reactor (ASBR) process was used to evaluate the hydrogen productivity of an acid‐enriched sewage sludge microflora at a temperature of 35 °C. In this ASBR process a 4 h cycle, including feed, reaction, settle, and decant steps, was repeatedly performed in a 5 L reactor. The sucrose substrate concentration was 20 g COD/L; the hydraulic retention time (HRT) was maintained at 12–120 h at the initial period and thereafter at 4–12 h. The reaction/settle period ratio, which is the most important parameter for ASBR operation was 1.7. The experimental results indicated that the hydrogenic activity of the sludge microflora was HRT‐dependent and that proper pH control was necessary for a stable operation of the bioreactor. The peak hydrogenic activity value was attained at an HRT of 8 h and an organic loading rate of 80 kg COD/m3 × day. Each mole of sucrose in the reactor produced 2.8 mol of hydrogen and each gram of biomass produced 39 mmol of hydrogen per day. An overly‐short HRT might deteriorate the hydrogen productivity. The concentration ratios of butyric acid to’acetic acid, as well as volatile fatty acid and soluble microbial products to alkalinity can be used as monitoring indicators for the hydrogenic bioreactor.  相似文献   

9.
The contents of glycogen, lipid, urea and amino acids, and some enzyme activities in plasma, liver muscle and urine were determined with rats fed 10 to 12 g of 100 g body weight per day of the 10% casein diet (control) and 10% casein diets containing 7% glycine with or without 1.4% l-arginine HC1 and l-methionine for 7 days.

Nine hours after the final feeding, the amount of liver glycogen was high in the order of rats fed 10% casein diet containing 7% glycine, 10% casein diet containing 7% glycine with l-arginine and l-methionine, and the control. The amount of muscle glycogen was decreased only in those fed the control diet. The amount of liver lipid was increased by the addition of l-arginine and l-methionine to the excess glycine diet. Plasma and urinary urea was increased in animals given the excess glycine diets with or without both amino acids. In plasma liver, and muscle of animals given either of both the excess glycine diets 3 and 9 hr after the feeding, in general, glycine and serine were increased, and threonine and alanine were decreased as compared with those of rats given the control diet. However, the increase of glycine in plasma, liver and muscle detected at 9 hr after feeding the excess glycine diet was slightly prevented by the supplementation of both amino acids to the excess glycine diet. The activities of liver glycine oxidase and ornithine δ-aminotransferase of rats given the excess glycine diet with both amino acids were higher than those of other dietary groups. Liver serine dehydratase and glutamate-oxalacetate transaminase activities were high in the order of the animals fed the control, the excess glycine diet and the excess glycine diet containing both amino acids. Glutamate-pyruvate transaminase activity in the liver of rats fed the excess glycine diets with or without both amino acids were markedly higher than that of those fed the control. The activities of phosphopyruvate carboxylase and aconitase in the liver of animals given the excess glycine diet were higher than those of other dietary groups. Liver pyruvate kinase and glutamate dehydrogenase activities were similar among those dietary groups.  相似文献   

10.
The interaction between poly(α,L -lysine) (DP = 180) and glutaraldehyde was investigated in dilute aqueous solution by measurement of the kinetics of proton release at constant pH and temperature and at various concentrations of the reaction components. Under various conditions, the release of protons at constant pH appeared kinetically to be composed of at least two steps: an initial zero-order reaction, followed by a slower reaction. At excess of polylysine amino groups, the pH optimum for the rates of reaction was at pH 9–10 (24–25°C). Under the conditions used and at pH 8, the initial rate of the second kinetic step was proportional to the glutaraldehyde concentration and was practically independent of polylysine concentration at pH 8 and 8.6, at an excess of amino groups. At pH values of 7, 8, and 8.6 the apparent overall energy of activation for the second kinetic step was 18–19 kcal/mole (temp. range 4–40°C). Comparing acetaldehyde with the difunctional glutaraldehyde, it was found that the rate of proton release was much smaller in the case of acetaldehyde. Comparing n-butylamine with the macromolecular polylysine at equal concentrations of amino groups, the rates of proton release were much smaller in the case of n-butylamine. Collagen in aqueous medium also interacted with glutaraldehyde in a manner analogous to polylysine, although the conditions were not quite comparable. In the case of collagen, the initial fast proton liberation step was relatively much larger than in the case of polylysine. A reaction scheme for the initial reaction steps is being proposed which includes primary complex formation between glutaraldehyde and polylysine. This dialdehyde–polyamino acid system is considered to serve as a model for tanning processes of hides and for fixation procedures.  相似文献   

11.
Addition of selected amino acids could be a means to improve production of recombinant proteins in industrial processes. We found that glycine increased the maximum specific growth rate of Escherichia coli from 0.67 to 0.78 h(-1), and the cell yield from 0.57 to 0.98 g dry weight per g substrate, when supplemented to batch cultures in a glucose-mineral medium. Maximum effect occurred at pH 6.8, at a glycine concentration of 6-12 mmol l(-1), and at cell densities below 1.15 g dry weight l(-1) (0D(610).3). When glycine was added to a culture at a cell density of 1.15 g l(-1) or above, no growth promoting effect of glycine was seen. The 'glycine effect' was not due to CO(2) produced by the glycine cleavage system (GCV), and the lack of effect at higher cell densities was not masked by acetate accumulation, but coincided with increased acetate production. The metabolism of glycine was further investigated in cultures supplied with [2-(13)C] labelled glycine, and the redistribution of label in the [1-(13)C], [2-(13)C], and [1,2-(13)C] isotopomeres of excreted acetate was analysed by 13C NMR. The NMR data revealed that very little degradation of glycine occurred at cell densities below 1.15 g l(-1). Simultaneously the biosynthesis of serine and glycine was repressed as judged by the absence of [2-(13)C] acetate, implying that added glycine was used as a source of glycine, serine, one-carbon units, and threonine. At cell densities above 1.15 g l(-1), 53% of the consumed glycine carbon was excreted as acetate. Degradation of glycine was associated with an increased uptake rate, cleavage by GCV, and degradation of both glycine-derived serine, and glucose-derived serine to pyruvate. This switch in metabolism appears to be regulated by quorum sensing.  相似文献   

12.
Abstract— Results of studies designed to estimate the rates at which glycine is derived from various possible sources in discrete areas of the rat CNS are reported. These results suggest that glycine is derived predominantly by de novo synthesis, presumably via the established pathways leading from glucose through serine to glycine. The content of glycine ranged from a low of approximately 0-6 μmol/g in the cerebellum and telencephalon to a high of 5·5 μmol/g in the spinal cord grey matter; however, based on its estimated rate of synthesis from serine, there appeared to be no correlation between the content of glycine and its rate of synthesis in the various areas studied. The flux of glycine from blood into the CNS was slower (0·03-0·15 μmol/g/h depending on the CNS structure) than that of serine (0·15-0·23 μmol/g/h) and both amino acids entered various CNS areas at rates unrelated to their respective tissue contents. These data have been discussed with regard to the putative transmitter function of glycine in the spinal cord and brainstem.  相似文献   

13.
The hyperhomocysteinemia induced by a dietary addition of 1% methionine was significantly suppressed by the concurrent addition of 1% glycine or 1.4% serine to the same degree. The methionine-induced increase in the hepatic concentration of methionine metabolites was significantly suppressed by glycine and serine, but the hepatic cystathionine beta-synthase activity was not enhanced by these amino acids. When the methionine-supplemented diet was changed to the methionine plus glycine or serine diet, the plasma homocysteine concentration rapidly decreased during and after the first day. The hyperhomocysteinemia induced by an intraperitoneal injection with methionine was also suppressed by concurrent injection with glycine or serine, although the effect of serine was significantly greater than that of glycine. These results indicate that glycine and serine were effective for suppressing methionine-induced hyperhomocysteinemia: serine and its precursor glycine are considered to have elicited their effects mainly by stimulating cystathionine synthesis by supplying serine, another substrate for cystathionine synthesis.  相似文献   

14.
Acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum has been extensively studied in recent years because the organism is recognized as an excellent butanol producer. A parallel bioreactor system with 48 stirred-tank bioreactors on a 12 mL scale was evaluated for batch cultivations of the strictly anaerobic, butanol-producing C. acetobutylicum ATCC 824. Continuous gassing with nitrogen gas was applied to control anaerobic conditions. Process performances of ABE batch fermentations on a milliliter scale were identical to the liter-scale stirred-tank reactor if reaction conditions were identical on the different scales (e.g., initial medium, pH, temperature, specific evaporation rates, specific power input by the stirrers). The effects of varying initial ammonia concentrations (0.1-4.4 g L(-1) ) were studied in parallel with respect to glucose consumption and butanol production of C. acetobutylicum ATCC 824 as a first application example. The highest butanol yield of 33% (mol mol(-1) ) was observed at initial ammonia concentrations of 0.5 and 1.1 g L(-1) . This is the first report on the successful application of a 48 parallel stirred-tank bioreactor system for reaction engineering studies of strictly anaerobic microorganisms at the milliliter scale.  相似文献   

15.
A complex biocatalyst system with a bioreactor equipped with a microfiltration (MF) module was employed to produce high-content fructooligosaccharides (FOS) in a continuous process initiated by a batch process. The system used mycelia of Aspergillus japonicus CCRC 93007 or Aureobasidium pullulans ATCC 9348 with beta-fructofuranosidase activity and Gluconobacter oxydans ATCC 23771 with glucose dehydrogenase activity. Calcium carbonate slurry was used to control pH to 5.5, and gluconic acid in the reaction mixture was precipitated as calcium gluconate. Sucrose solution with an optimum concentration of 30% (w/v) was employed as feed for the complex cell system, and high-content FOS was discharged continuously from a MF module. The complex cell system was run at 30 degrees C with an aeration rate of 5 vvm and produced more than 80% FOS with the remainder being 5-7% glucose and 8-10% sucrose on a dry weight basis, plus a small amount of calcium gluconate. The system worked for a 7-day continuous production process with a dilution rate of 0.04 h(-1), and the volumetric productivity for total FOS was more than 160 g L(-1) h(-1).  相似文献   

16.
This report describes studies of mutant lines of cultured Chinese hamster ovary cells that have different levels of serine transhydroxymethylase (EC 2.1.2.1). This enzyme, which splits serine to yield glycine and N5,N10-methylene tetrahydrofolic acid, is found in both the mitochondria and cytosol of these cells (see Chasin et al. (1974) Proc. Nat. Acad. Sci. USA71, 718–722). Our experiments with these mutant lines have established a correlation among the amount of mitochondrial serine transhydroxymethylase, the intracellular glycine concentration, and the extent that exogenous serine increases the glycine pool. Limited amino acid incorporation into protein occurred with all cell lines, but in contrast to the glycine-requiring mutant line 51-11, revertants that no longer required glycine for growth showed increased incorporation when the medium was supplemented with serine. These results indicate that normally the mitochondrial serine transhydroxymethylase together with the intracellular serine concentration regulate the supply of glycine and under certain conditions can control the rate of protein synthesis. Additional experiments with radioactive serine and glycine have shown that the mitochondrial serine transhydroxymethylase regulates the interconversion of these amino acids as well as serine oxidation. Calculations based on the 14CO2 produced from l-[14C]serine by the mutant and parental cell lines indicate that approximately 50% of the serine oxidized is initially converted to glycine and an oxidizable one-carbon unit.  相似文献   

17.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

18.
A recombinant monoclonal antibody produced by Chinese hamster ovary (CHO) cell fed‐batch culture was found to have amino acid sequence misincorporation upon analysis by intact mass and peptide mapping mass spectrometry. A detailed analysis revealed multiple sites for asparagine were being randomly substituted by serine, pointing to mistranslation as the likely source. Results from time‐course analysis of cell culture suggest that misincorporation was occurring midway through the fed‐batch process and was correlated to asparagine reduction to below detectable levels in the culture. Separate shake flask experiments were carried out that confirmed starvation of asparagine and not excess of serine in the medium as the root cause of the phenomenon. Reduction in serine concentration under asparagine starvation conditions helped reduce extent of misincorporation. Supplementation with glutamine also helped reduce extent of misincorporation. Maintenance of asparagine at low levels in 2 L bench‐scale culture via controlled supplementation of asparagine‐containing feed eliminated the occurrence of misincorporation. This strategy was implemented in a clinical manufacturing process and scaled up successfully to the 200 and 2,000 L bioreactor scales. Biotechnol. Bioeng. 2010;107: 116–123. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Extractive fermentation for lactic acid production   总被引:8,自引:0,他引:8  
Lactic acid extractive fermentation was demonstrated using Alamine 336 in oleyl alcohol at acidic pH. The use of an efficient extraction system was possible through employment of the cell immobilization procedure. Process modeling was performed to relate the various process parameters such as flow rate, concentration, and pH. In experiments with 15% Alamine 336/oleyl alcohol, the bioreactor operation resulted in a higher productivity (12 g/L gel h) compared to that of a control fermentation (7 g/L gel h). Strategies for optimizing the extractive fermentation process were proposed considering both productivity and product recovery.  相似文献   

20.
In a previous paper, we pointed out that the capability to synthesize glycine from serine is constrained by the stoichiometry of the glycine hydroxymethyltransferase reaction, which limits the amount of glycine produced to be no more than equimolar with the amount of C 1 units produced. This constraint predicts a shortage of available glycine if there are no adequate compensating processes. Here, we test this prediction by comparing all reported fluxes for the production and consumption of glycine in a human adult. Detailed assessment of all possible sources of glycine shows that synthesis from serine accounts for more than 85% of the total, and that the amount of glycine available from synthesis, about 3 g/day, together with that available from the diet, in the range 1.5–3.0 g/day, may fall significantly short of the amount needed for all metabolic uses, including collagen synthesis by about 10 g per day for a 70 kg human. This result supports earlier suggestions in the literature that glycine is a semi-essential amino acid and that it should be taken as a nutritional supplement to guarantee a healthy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号