首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, numerous Lycopersicon accessions have been described that harbor resistance genes to Cladosporium fulvum (Cf genes). Several Cf genes have been isolated, like Cf-4, Cf-4A and Cf-9, which are present on the short arm of Chromosome 1, and Cf-2 and Cf-5, which reside on Chromosome 6. To identify Cf genes linked to the Hcr9 cluster ”Milky Way” on the short arm of Chromosome 1, we test-crossed 66 resistant Lycopersicon accessions to the near-isogenic line Moneymaker-Cf4, and the F1s were crossed to the susceptible tomato cultivar Moneymaker. Putative linkage between an unknown Cf gene and Cf-4 was concluded based on small-scale allelic tests from an under-representation of susceptible genotypes in the progenies of 24 plants after inoculation with race 0 of C. fulvum. In this way, of the 21 resistant lines tested, 10 harbored a Cf gene that was linked to the Hcr9 Milky Way cluster. Moreover, one of the lines harboring a Cf gene closely linked to Cf-4 specifically recognizes the extracellular protein ECP5 of C. fulvum and was designated Cf-ECP5. Using a testcross population of 338 plants, we mapped Cf-ECP5 more accurately at 4 cM proximal to the Hcr9 Milky Way locus. This report shows that the method of small-scale allelic tests provides a useful tool to rapidly screen for Cf genes on the short arm of Chromosome 1. Further analysis of these Cf genes will elucidate the complex genetic organization of Cf genes on Chromosome 1 of tomato. Received: 23 August 1999 / Accepted: 12 January 2000  相似文献   

2.
The resistance of tomato to the pathogenic fungus Cladosporiumfulvum complies with the gene-for-gene relationship. Race specificresistance is based on Cf-gene mediated recognition ofsecreted avirulence products, resulting in a hypersensitive response (HR).Besides the avirulence gene products, C. fulvum secretes anumber of extra cellular proteins (ECPs) into the apoplast. Two L.esculentum accessions have previously been identified that reactedwith a HR upon injection with purified ECP3. The corresponding resistance genedesignated Cf-ECP3 was mapped by using an F2population composed of 192 plants from the cross of susceptible MoneyMaker toresistant L. esculentum G1.1153.Cf-ECP3 inherited monogenically, cosegragated with theChromosome 1 Cleaved Amplified Polymorphic Sequence (CAPS) marker CT116 and wasmapped accurately at Orion, a locus harbouring Cf-ECP2 inother genotypes. RFLP anaysis with a Cf-9 probe furtherdemonstrated cosegregation of Cf-ECP3 with anHcr9 (Homologue of Cladosporiumfulvumresistance gene Cf-9) indicating that this gene is likelyan Hcr9. Thus in addition to the Milky Way locusharbouringthe Cf-4, Cf-4A andCf-9 resistance genes targeted against AVR4, AVR4A andAVR9, Orion is another complex locus on the short arm of Chromosome 1 thatharbours at least two functional Cf-genes,Cf-ECP2 and Cf-ECP3, targeted againstthe fungal excreted proteins ECP2 and ECP3.  相似文献   

3.
A gene has been identified in tomato, which confers resistance to Cladosporium fulvum through recognition of the pathogenicity factor ECP2. Segregation analysis of F2 and F3 populations showed monogenic dominant inheritance, as for previously reported Cf resistances. The gene has been designated Cf-ECP2. Using several mapping populations, Cf-ECP2 was accurately mapped on chromosome 1, 7.7 cM proximal to TG236 and 6.0 cM distal to TG184. Although Cf-ECP2 is linked to Cf-4, it is not located in the Hcr9 cluster “Milky Way”. Therefore, Cf-ECP2 is the first functional Cf homologue on chromosome 1 that does not belong to this Hcr9 cluster. No recombination events between Cf-ECP2 and CT116 have been observed in three populations tested, representing 282 individuals. The low value for the physical distance per cM around CT116 reported previously and the high probability that Cf-ECP2 is also a member of a Hcr9 cluster will facilitate cloning of the locus. Received: 15 June 1999 / Accepted: 24 August 1999  相似文献   

4.
Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the virulence spectrum of 133 C. fulvum isolates collected from 22 prefectures in Japan, and subsequently sequenced the avirulence (Avr) genes Avr2, Avr4, Avr4E, Avr5 and Avr9 to determine the molecular basis of overcoming Cf genes. Twelve races of C. fulvum with a different virulence spectrum were identified, of which races 9, 2.9, 4.9, 4.5.9 and 4.9.11 occur only in Japan. The Avr genes in many of these races contain unique mutations not observed in races identified elsewhere in the world including (i) frameshift mutations and (ii) transposon insertions in Avr2, (iii) point mutations in Avr4 and Avr4E, and (iv) deletions of Avr4E, Avr5 and Avr9. New races have developed by selection pressure imposed by consecutive introductions of Cf-2, Cf-4, Cf-5 and Cf-9 genes in commercially grown tomato cultivars. Our study shows that molecular variations to adapt to different Cf genes in an isolated C. fulvum population in Japan are novel but overall follow similar patterns as those observed in populations from other parts of the world. Implications for breeding of more durable C. fulvum resistant varieties are discussed.  相似文献   

5.
Leaf mould disease in tomato is caused by the biotrophic fungus Cladosporium fulvum. An Ac/Ds targeted transposon tagging strategy was used to isolate the gene conferring resistance to race 5 of C. fulvum, a strain expressing the avirulence gene Avr4. An infection assay of 2-week-old seedlings yielded five susceptible mutants, of which two had a Ds element integrated in the same gene at different positions. This gene, member of a gene family, showed high sequence homology to the C. fulvum resistance genes Cf-9 and Cf-2. The gene is predicted to encode an extracellular transmembrane protein containing a divided domain of 25 leucine-rich repeats. Three mutants exhibited a genomic deletion covering most of the Lycopersicon hirsutum introgressed segment, including the Cf-4 locus. Southern blot analysis revealed that this deletion includes the tagged gene and five homologous sequences. To test whether the tagged gene confers resistance to C. fulvum via Avr4 recognition, the Avr4 gene was expressed in planta. Surprisingly, expression of the Avr4 gene still triggered a specific necrotic response in the transposon-tagged plants, indicating that the tagged resistance gene is not, or is not the only gene, involved in Avr4 recognition. Mutants harbouring the genomic deletion did not show this Avr4-specific response. The deleted segment apparently contains, in addition to the tagged gene, one or more other genes, which play a role in the Avr4 responses. The tagged gene is present at the Cf-4 locus, but it does not necessarily recognize Avr4 and is therefore designated Cf-4A.  相似文献   

6.
Four different populations segregating for one of the two closely linked (possibly allelic) tomato disease resistance genes to the fungusCladosporium fulvum,Cf-4 andCf-9, were generated and analysed for recombination frequencies between theCf-genes and restriction fragment length polymorphism (RFLP) loci. The population consisting of F2 progeny from the interspecific crossLycopersicon esculentum carryingCf-9 ×L. pennellii was identified as the most useful for RFLP mapping of theCf-4/9 locus and an RFLP map around this locus was constructed mainly using this population. The two closest markers identified were CP46, 2.6 cM distal, and a group of 11 markers including TG236, 3.7 cM proximal toCf-4/9. A polymerase chain reaction (PCR)-based procedure for the rapid identification of recombination events between these two markers was developed. The regions of foreign DNA introgression surroundingCf-4 andCf-9 in near-isogenic lines were delimited.  相似文献   

7.
8.
Hypersensitive cell death occurs in tomato seedlings that are derived from a cross between plants that express a resistance (Cf) gene against the pathogenic fungus Cladosporium fulvum and plants that contain the matching avirulence (Avr) gene originating from this fungus. The pattern of Cf-9/Avr9- and Cf-4/Avr4-induced necrosis in these F1 seedlings was found to differ significantly. Macroscopic observation revealed that in F1 tomato seedlings containing both Cf-9 and Avr9, numerous necrotic spots developed that were scattered over the entire cotyledon, while the midvein and primary veins remained unaffected. In seedlings containing both Cf-4 and Avr4, however, initially only one or a few necrotic spots developed on each cotyledon, in most cases in the midvein and occasionally in primary veins. Subsequently, these spots turned rapidly into lesions that enlarged along the midvein and primary veins, eventually causing the cotyledons to wilt and abscise. These observations were confirmed by detailed histological studies. Production of the AVR proteins in adult tomato plants carrying the matching Cf gene, employing potato virus X, resulted in similar patterns of necrosis. RNA gel blot analysis demonstrated that both Avr4 and Avr9, controlled by the CaMV 35S promoter, were highly expressed in seedlings already at one day post-emergence, indicating that the distinct necrotic patterns are not due to differences in Avr expression levels. We have analysed the expression of many genes involved in defence signalling pathways and the defence response itself, during the onset of the Cf/Avr-initiated hypersensitive response (HR). Although most of the genes were expressed stronger and faster in Cf-4/Avr4 seedlings than in Cf-9/Avr9 seedlings at the onset of HR, no significant qualitative differences in the expression of genes involved in downstream signalling were observed when Cf-4/Avr4- and Cf-9/Avr9-induced defence responses were compared.  相似文献   

9.
Host genotype specificity in interactions between biotrophic fungal pathogens and plants in most cases complies with the gene-for-gene model. Success or failure of infection is determined by absence or presence of complementary genes, avirulence and resistance genes, in the pathogen and the host plant, respectively. Resistance, expressed by the induction of a hypersensitive response followed by other defence responses in the host, is envisaged to be based on recognition of the pathogen, mediated through direct interaction between products of avirulence genes of the pathogen (the so-called race-specific elicitors) and receptors in the host plant, the putative products of resistance genes. The interaction between the biothrophic fungusCladosporium fulvum and its only host tomato is a model system to study fungus-plant gene-for-gene relationships. Here we report on isolation, characterization and biological function of putative pathogenicity factors ECP1 and ECP2 and the race-specific elicitors AVR4 and AVR9 ofC. fulvum and cloning and regulation of their encoding genes. Disruption ofecp1 andecp2 genes has no clear effect on pathogenicity ofC. fulvum. Disruption of theavr9 gene, which codes for the race-specific 28 amino acid AVR9 elicitor, in wild type avirulent races, leads to virulence on tomato genotypes carrying the complementary resistance geneCf9. The avirulence geneavr4 encodes a 105 amino acid race-specific elicitor. A single basepair change in the avirulence geneavr4 leads to virulence on tomato genotypes carrying theCf4 resistance gene.  相似文献   

10.
The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 disease-sensitive recombinants and by complementation analysis. The analysis did not exclude the possibility that an additional gene(s) located distal to Cf-4 may also confer resistance to C. fulvum. We demonstrate that a number of Dissociation-tagged Cf-4 mutants, identified on the basis of their insensitivity to Avr4, are still resistant to infection by C. fulvum race 5. Molecular analysis of 16 Cf-4 mutants, most of which have small chromosomal deletions in this region, suggested the additional resistance specificity is encoded by Hcr9-4E. Hcr9-4E recognizes a novel C. fulvum avirulence determinant that we have designated Avr4E.  相似文献   

11.
The Cf-9 gene in the tomato is known to confer resistance against leaf mold disease caused by Cladosporium fulvum, and a gene-based marker targeted to the Cf-9 allele has been widely used as a crop protection approach. However, we found this marker to be misleading in genotyping. Therefore, we developed new single-nucleotide polymorphism (SNP) and insertion and deletion (InDel) markers targeted to the Cf-9 allele in order to increase genotyping accuracy and facilitate high-throughput screening. The DNA sequences of reported Cf-9, cf-9, Cf-0, and closely related Cf-4 alleles were compared, and two functional and non-synonymous SNPs were found to distinguish the Cf-9 resistance allele from the cf-9, Cf-0, and Cf-4 alleles. An SNP marker including these two SNPs was developed and applied to the genotyping of 33 tomato cultivars by high-resolution melting analysis. Our SNP marker was able to select all three Cf-9 genotypes (resistant, heterozygous, and susceptible alleles). Interestingly, two cultivars were grouped separately from these three genotypes. To further examine this outgroup, we preformed polymerase chain reaction (PCR) on two InDel regions identified by sequence comparison of the Cf-9 and Cf-4 genes. The band patterns revealed that these two cultivars carried Cf-4 rather than Cf-9 alleles and that three cultivars classified in the Cf-9 resistance group actually carried both Cf-9 and Cf-4 genes. To determine whether these genotyping results were consistent with disease resistance phenotypes, we examined the induction of a hypersensitive response by transiently expressing the corresponding effector genes, and found that the results matched perfectly with the genotyping results. These findings indicate that the combination of our SNP and InDel markers allows resistant Cf-9 alleles to be distinguished from cf-9 and Cf-4 alleles, which will be useful for marker-assisted selection of tomato cultivars resistant to C. fulvum.  相似文献   

12.
Intercellular fluid (IF) obtained from tomato (Lycopersicon esculentum L.) leaflets colonized by Cladosporium fulvum Cooke contains specific elicitors that induce necrosis in tomato cultivars resistant to the race of C. fulvum used to produce the IF. The responses of cell-suspension cultures produced from tomato lines near-isogenic for resistance genes Cf 4 and Cf 5 to IF produced from leaves infected by races 4 (virulent on Cf 4 but not Cf 5 plants), 2.4.5, and 2.4.5.9 (both virulent on Cf 4 and Cf 5 plants) were used to investigate the possibility that active oxygen (AO) species were involved in the initial host reaction to these elicitors. Concurrently, the same assays were used to determine if the cell lines retained the elicitor specificity of the original plants. An IF/cell combination that gives an incompatible reaction in leaves (race 4 IF and Cf 5 cells) showed reduced oxygen uptake and increases in malonaldehyde (a product of lipid peroxidation); cytochrome c reducing activity, which was inhibited by superoxide dismutase (SOD) (an assay for superoxide); luminol-dependent chemiluminescence (an assay for several AO species); activity of extracellular peroxidases; and extracellular phenolic compounds. In contrast, compatible combinations (IF from races 2.4.5 or 2.4.5.9 and Cf 4 or Cf 5 cells; race 4 IF and Cf 4 cells) did not exhibit any of these changes. The addition of catalase, SOD, ascorbate (a scavenger of superoxide), mannitol (a scavenger of the hydroxyl radical), KCN, or salicyl hydroxamic acid (both inhibitors of peroxidases) prior to IF treatment reduced the IF-induced increases in malonaldehyde and extracellular phenolics. Catalase was an effective inhibitor of the IF-induced changes in oxygen uptake and cytochrome c reducing activity. These results demonstrate the specificity of the IF-induced cell responses and confirm that AO species are involved in the initial cell response.  相似文献   

13.
Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding. Received: 21 June 1999 / Accepted: 1 December 1999  相似文献   

14.
The Cf-6 locus of tomato conferring resistance to the Belarus population of the leaf mould causative agent was mapped to the chromosomal region, located 2.2 and 3.4 cM apart from the microsatellite markers, SSR128 and SSR48, respectively. It was demonstrated that the Cf-6 gene, like the Cf-2/Cf-5 cluster, was located on the short arm of tomato chromosome 6. However, Cf-6 differed from these genes concerning phytopathology and molecular characteristics. Based on the Cf-2 gene sequence, a molecular marker, 2-2C, capable of identification of the Cf-6, Cf-2, and Cf-5 loci, was constructed.  相似文献   

15.
Tomato spotted wilt virus is an important threat to tomato production worldwide. A single dominant resistance gene locus, Sw5, originating from Lycopersicon peruvianum, has been identified and introgressed in cultivated tomato plants. Here we present the genomic organization of a 35 250 bp fragment of a BAC clone overlapping the Sw5 locus. Two highly homologous (95%) resistance gene candidates were identified within 40 kb of the CT220 marker. The genes, tentatively named Sw5-a and Sw5-b, encode proteins of 1245 and 1246 amino acids, respectively, and are members of the coiled-coil, nucleotide-binding-ARC, leucine-rich repeat group of resistance gene candidates. Promoter and terminator regions of the genes are also highly homologous. Both genes significantly resemble the tomato nematode and aphid resistance gene Mi and, to a lesser extent, Pseudomonas syringae resistance gene Prf. Transformation of Nicotiana tabacum cv. SR1 plants revealed that the Sw5-b gene, but not the Sw5-a gene, is necessary and sufficient for conferring resistance against tomato spotted wilt virus.  相似文献   

16.
To facilitate infection, pathogens deploy a plethora of effectors to suppress basal host immunity induced by exogenous microbe-associated or endogenous damage-associated molecular patterns (DAMPs). In this study, we have characterized family 17 glycosyl hydrolases of the tomato pathogen Cladosporium fulvum (CfGH17) and studied their role in infection. Heterologous expression of CfGH17-1 to 5 by potato virus X in different tomato cultivars showed that CfGH17-1 and CfGH17-5 enzymes induce cell death in Cf-0, Cf-1 and Cf-5 but not in Cf-Ecp3 tomato cultivars or tobacco. Moreover, CfGH17-1 orthologues from other phytopathogens, including Dothistroma septosporum and Mycosphaerella fijiensis, also trigger cell death in tomato. CfGH17-1 and CfGH17-5 are predicted to be β-1,3-glucanases and their enzymatic activity is required for the induction of cell death. CfGH17-1 hydrolyses laminarin, a linear 1,3-β-glucan with 1,6-β linkages. CfGH17-1 expression is down-regulated during the biotrophic phase of infection and up-regulated during the necrotrophic phase. Deletion of CfGH17-1 in C. fulvum did not reduce virulence on tomato, while constitutive expression of CfGH17-1 decreased virulence, suggesting that abundant presence of CfGH17-1 during biotrophic growth may release a DAMP that activates plant defence responses. Under natural conditions CfGH17-1 is suggested to play a role during saprophytic growth when the fungus thrives on dead host tissue, which is in line with its high levels of expression at late stages of infection when host tissues have become necrotic. We suggest that CfGH17-1 releases a DAMP from the host cell wall that is recognized by a yet unknown host plant receptor.  相似文献   

17.
Using the technique of amplified restriction fragment polymorphism (AFLP) analysis, and bulked segregant pools from F2 progeny of the cross Lycopersicon esculentum (Cf9)× L. pennellii , approximately 42 000 AFLP loci for tight linkage to the tomato Cf-9 gene for resistance to Cladosporium fulvum have been screened. Analysis of F2 recombinants identified three markers which co-segregated with Cf-9 . The Cf-9 gene has recently been isolated by transposon tagging using the maize transposon Dissociation ( Ds ). Analysis of plasmid clones containing Cf-9 shows that two of these markers are located on opposite sides of the gene separated by 15.5 kbp of intervening DNA. AFLP analysis provides a rapid and efficient technique for detecting large numbers of DNA markers and should expedite plant gene isolation by positional cloning and the construction of high-density molecular linkage maps of plant genomes.  相似文献   

18.
Resistance against the tomato fungal pathogen Cladosporium fulvum is often conferred by Hcr9 genes (Homologues of the C. fulvum resistance gene Cf-9) that are located in the Milky Way cluster on the short arm of chromosome 1. These Hcr9 genes mediate recognition of fungal avirulence gene products. In contrast, the resistance gene Cf-Ecp2 mediates recognition of the virulence factor Ecp2 and is located in the Orion (OR) cluster on the short arm of chromosome 1. Here, we report the map- and homology-based cloning of the OR Hcr9 cluster. A method was optimised to generate clone-specific fingerprint data that were subsequently used in the efficient calculation of genomic DNA contigs. Three Hcr9s were identified as candidate Cf-Ecp2 genes. By PCR-based cloning using specific OR sequences, orthologous Hcr9 genes were identified from different Lycopersicon species and haplotypes. The OR Hcr9s are very homologous. However, based on the relative low sequence homology to other Hcr9s, the OR Hcr9s are classified as a new subgroup.Data deposition: The sequence of the Cf-Ecp2 Hcr9 gene cluster and the orthologous Hcr9 sequences have been deposited in the GenBank database (accession No. AY639600..AY639604)  相似文献   

19.
The AVR9 elicitor from the fungal pathogen Cladosporium fulvum induces defense-related responses, including cell death, specifically in tomato (Lycopersicon esculentum Mill.) plants that carry the Cf-9 resistance gene. To study biochemical mechanisms of resistance in detail, suspension cultures of tomato cells that carry the Cf-9 resistance gene were initiated. Treatment of cells with various elicitors, except AVR9, induced an oxidative burst, ion fluxes, and expression of defense-related genes. Agrobacterium tumefaciens-mediated transformation of Cf9 tomato leaf discs with Avr9-containing constructs resulted efficiently in transgenic callus formation. Although transgenic callus tissue showed normal regeneration capacity, transgenic plants expressing both the Cf-9 and the Avr9 genes were never obtained. Transgenic F1 seedlings that were generated from crosses between tomato plants expressing the Avr9 gene and wild-type Cf9 plants died within a few weeks. However, callus cultures that were initiated on cotyledons from these seedlings could be maintained for at least 3 months and developed similarly to callus cultures that contained only the Cf-9 or the Avr9 gene. It is concluded, therefore, that induction of defense responses in Cf9 tomato cells by the AVR9 elicitor is developmentally regulated and is absent in callus tissue and cell-suspension cultures, which consists of undifferentiated cells. These results are significant for the use of suspension-cultured cells to investigate signal transduction cascades.  相似文献   

20.
The four loci Gabra3, DXPas8, CamL1, and Bpa, located near the murine X-linked visual pigment gene (Rsup), have been ordered using 248 backcross progeny from an interspecific mating of (B6CBA-Aw-J/A-Bpa) and Mus spretus. One hundred twenty backcross progeny have been analyzed at seven anchor loci spanning the X chromosome and form a regional mapping panel. An additional 128 progeny have been screened for recombination events between Cf-9 and Dmd. Eighteen recombinants between these loci have been detected in the 248 animals; all of the recombinants were screened at the other anchor loci to identify any double crossovers. Pedigree analysis using these recombinants strongly favors a gene order of (Cf-9)-Gabra3-(DXPas8, Bpa)-CamL1-(Rsvp, P3, Cf-8)-Dmd for the loci studied. Synteny with human Xq27–Xq28 is retained, although the relative order of some loci may differ between the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号