首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

2.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

3.
Summary Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding.  相似文献   

4.
5.
The tribe Oryzeae consists of 12 genera and 71 species with a world distribution.Zizania latifolia (Griseb.) Turcz. ex Stapf is included in this tribe and possesses numerous traits valuable for rice breeding, such as disease and insect resistance, cold and flood tolerance, and high grain quality. The genetics and breeding ofZ. latifolia are still in their infancy. To facilitate genomic studies ofZizania, a genomic DNA library was constructed using a transformation-competent artificial chromosome (TAC) vector system. The TAC library contains 91, 584 TAC clones with an average insert size of approximately 45 kb, covering six haploidZizania genome equivalents. Very low signals after hybridization with chloroplast and mitochondrial genes indicate that the TAC library is predominantly composed of nuclear DNA. The TAC clones were stable inE. coli for 100 generations. Clones containing thedihydrodipicolinate synthase (DHPS) gene were screened by pooled PCR. The positive clones can be used forZ. latifolia DHPS gene cloning and functional analysis. The library will be useful in studies of genome structure, gene cloning and evolution of rice.  相似文献   

6.
As a genome model of fruit trees, peach (Prunus persica [L.] Batch) has advantages for studying structural and functional genomics. Okubo, a traditional peach variety used as a parent in Asian peach breeding, displays economically valuable agronomic traits. To develop an efficient platform for peach gene cloning and genomic research, a large-insert genomic DNA library of Okubo was constructed in a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, which can accept and stably maintain large genomic DNA fragments in bothEscherichia coli andAgrobacterium tumefaciens. The TAC library contains 41,472 recombinant clones with an average insert size of approximately 42 kb, and it is equivalent to 6 haploid peach genomes. The TAC library was stored in 2 ways: one copy as frozen cultures in 108 pieces of 384-well plates and another copy as bulked pools in 36 pieces of 96-well plates, each well containing 12 individual clones. The lack of hybridization signal to chloroplast and mitochondrial genes indicated that the TAC library had no significant cytoplast organelle DNA contamination. TAC clones were stable inE. coli cells until generation 100 and stable in bothE. coli andA. tumefaciens. Twenty-one clones containing the polygalacturonase-inhibiting protein (PGIP) gene were detected by using pooled PCR in the TAC library. Positive clones can be used for peach PGIP gene cloning and functional analysis. The library is well suited for gene cloning and genetic engineering in peach.  相似文献   

7.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens  相似文献   

8.
A cDNA clone (6PExt 1.2) encoding a novel extensin was isolated from a cDNA library made from 6 h old mesophyll protoplasts of Nicotiana sylvestris. The screening was performed with a heterologous probe from carrot. The encoded polypeptide showed features characteristic of hydroxyproline-rich glycoproteins such as Ser-(Pro)4 repeats and a high content in Tyr and Lys residues. The presence of four Tyr-X-Tyr-Lys motifs suggests the possibility for intramolecular isodityrosine cross-links whereas three Val-Tyr-Lys motifs may participate in intermolecular cross-links. The analysis of genomic DNA gel blots using both the N. sylvestris and the carrot clones as probes showed that the 6PExt 1.2 gene belongs to a complex multigene family encoding extensin and extensin-related polypeptides in N. sylvestris as well as in related Nicotianeae including a laboratory hybrid. This was confirmed by the analysis of RNA gel blots: a set of mRNAs ranging in size from 0.3 kb to 3.5 kb was found by the carrot extensin probe. The 6PExt 1.2 probe found a 1.2 kb mRNA in protoplasts and in wounded tissues as well as a 0.9 kb mRNA which seemed to be stem-specific. The gene encoding 6PExt 1.2 was induced by wounding in protoplasts, in leaf strips and after Agrobacterium tumefaciens infection of stems.  相似文献   

9.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

10.
We usedAgrobacterium tumefaciens to transform flowering stalk explants of five genotypes of broccoli with a construct containing the neomycin phosphotransferase gene and aBacillus thuringiensis (Bt) gene [CryIA(c) type] optimized for plant expression. Overall transformation efficiency was 6.4%; 181 kanamycin-resistant plants were recovered. Of the 162 kanamycin-resistant plants tested, 112 (69%) caused 100% morality of 1st-instar larvae of aBt-susceptible diamondback moth strain. Southern blots of some resistant transformants confirmed presence of theBt gene. Selected plants that gave 100% mortality of susceptible larvae allowed survival of a strain of diamondback moth that had evolved resistance toBt in the field. F1 hybrids between resistant and susceptible insects did not survive. Analysis of progeny from 26 resistant transgenic lines showed 16 that gave segregation ratios consistent with a single T-DNA integration. Southern analysis was used to verify those plants possessing a single T-DNA integration. Because these transgenic plants kill susceptible larvae and F1 larvae, but serve as a suitable host for resistant ones, they provide an excellent model for tests ofBt resistance management strategies.  相似文献   

11.
 By using highly regenerative calluses, we developed a stable transformation system in garlic (Allium sativum L.). The temperature and number of days of co-cultivation with Agrobacterium tumefaciens was shown to be an important factor in transient expression of the uid A gene. After a culture period of 5 months in selection medium containing hygromycin, 20 shoots were induced from ca. 1000 calluses, among which 15 plants expressed β-glucuronidase activity upon staining with X-Gluc. Shoots developed into transgenic garlic after 1 month. Integration of the uid A gene was confirmed by Southern blot analysis for genomic DNA of transgenic garlic plants. Received: 25 October 1999 / Revision received: 16 February 2000 / Accepted: 22 February 2000  相似文献   

12.
13.
Homosporous ferns are generally considered polyploid due to high chromosome numbers, but genetically diploid since the expression of isozymes is generally controlled by a single locus. Gene silencing over evolutionary time is one means by which this apparent contradiction can be explained. A prediction of this hypothesis is that silenced gene sequences still reside in the genomes of homosporous ferns. We examined the genomes ofCeratopteris richardii andC. thalictroides for sequences which are similar to expressed gene sequences. Genomic DNA blots hybridized withC. richardii cDNA clones showed that the majority of these clones detected multiple fragments, suggesting that most gene-like sequences are duplicated inCeratopteris. Hybridization signal intensity often varied between fragments of the same size between accessions, sometimes dramatically, which indicates that not all sequences are equivalent, and may represent the products of silenced genes. Observed reciprocal differences in intensity could be due to reciprocally silenced genes. In addition, an unusual segregation pattern for one locus followed by one probe may indicate homeologous chromosome pairing and segregation.  相似文献   

14.
15.
The compartmentation and metabolism of indole-3-acetic acid (IAA) was examined in protoplasts derived from needles ofPinus sylvestris L., leaves of normal plants ofNicotiana tabacum L., leaves ofN. tabacum plants carrying the T-DNA gene 1 (rG1 plants) and leaves ofN. tabacum plants carrying the T-DNA gene 2 (rG2 plants) by using a rapid cell-fractionation method. In all tissues, 30%–40% of the IAA pool was located in the chloroplast, while the remainder was found in the cytosol. Quantitative analysis of indole-3-ethanol (IEt) showed that in bothPinus andNicotiana the IEt pool was located exclusively in the cytosol. The only plant that contained endogenous indoleacetamide (IAAm) was therG1-mutant ofN. tabacum, expressing theAgrobacterium tumefaciens T-DNA gene 1. Cellular fractionation of protoplasts from this transgenic plant showed that the entire IAAm pool was located in the cytosol. Feeding experiments utilizing [5-3H]tryptophan, [5-3H]IEt, [1′-14C] and [2′-14C]IAA demonstrated that the biosynthesis and catabolism of IAA occurred in the cytosol in bothPinus and in the wild type and the different mutants ofNicotiana. Furthermore, the biosynthesis of IAAm in therG1 plants was also shown to be localized in the cytosol.  相似文献   

16.
A multi-needle-assisted transformation of soybean cotyledonary node cells   总被引:3,自引:0,他引:3  
Xue RG  Xie HF  Zhang B 《Biotechnology letters》2006,28(19):1551-1557
A new and simple method for wounding cotyledonary node cells of soybean [Glycine max (L) Merrill] was developed for obtaining a high frequency of transformants. Soybean seeds were germinated for 1 day, and the cotyledonary node cells of half-seeds were wounded mechanically by using a multi-needle consisting of thin 30 fibers. The wounded half-seeds were inoculated with Agrobacterium tumefaciens cells harboring a recombinant DNA that contained the bar and sgfp genes conferring phosphinothricin (PPT)-resistance and green fluorescent protein (GFP) activity, respectively. The inoculated explants were selected on medium containing 5 or 3 mg PPT/l. The transformation efficiency of soybean was up to 12%. Polymerase chain reaction and genomic Southern blot analysis confirmed stable integration of the transgenes in the genome of the PPT-resistant plants. GFP analysis revealed that the transgenes were highly expressed in the plantlets. Adult plants were resistant to 100 mg PPT/l applied on the leaves, demonstrating their herbicide-resistance.An erratum to this article can be found at  相似文献   

17.
Stable expression of foreign genes was achieved in sweet potato (Ipomoea batatas (L.) Lam) plants using anAgrobacterium tumefaciens mediated system. Embryogenic calluses produced from apical meristems of cultivar White Star were multiplied and cocultivated withA. tumefaciens strain EHA101 harboring a binary vector containing the -glucuronidase (GUS) and neomycin phosphotransferase (NPT II) genes. The calluses were transferred to selective regeneration medium and kanamycin resistant embryos were recovered which developed into morphologically normal plants. Histochemical and fluorimetric GUS assays of plants developed from the kanamycin resistant embryos were positive. Amplified DNA fragments were produced in polymerase chain reactions using GUS-specific primers and DNA from these plants. Transformation was confirmed by Southern analysis of the GUS gene. With the developed method, transgenic sweet potato plants were obtained within 7 weeks. This method will allow genetic improvement of this crop by the introduction of agronomically important genes.Florida Agricultural Experiment Station Journal Series N-02231. This research was partially supported by CNPq/RHAE (Brazil).  相似文献   

18.
Amplification of thebar gene usingTaq DNA polymerase in PCR is often not successful, possibly due tobar's high GC content. We describe a PCR protocol in which reliable amplification at a sensitivity of one gene copy per genome (in this study, barley) present in the reaction was achieved using a novel pair of primers and Expandtm High Fidelity DNA polymerase mix (Boehringer Mannheim). This method should allow for rapid screening of plants putatively transformed withbar.  相似文献   

19.
A gene encoding the outer capsid glycoprotein (VP7) of simian rotavirus SA11, was genetically linked to the amino terminus of the ricin toxin B subunit (RTB) isolated from castor-oil plant (Ricinus communis) seeds. To assess fusion protein expression in plant cells, the VP7::RTB fussion gene was transferred into potato (Solanum tuberosum) cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The fusion gene was detected in transformed potato genomic DNA by polymerase chain reaction DNA amplification methods. Immunoblot analysis with anti-SA11 antiserum as the primary antibody verified the presence of VP7::RTB fusion protein in transformed potato tuber tissues. The plant-synthesized fusion protein bound RTB membrane receptors as measured by asialofetuin-enzyme-linked immunosorbent assay (ELISA). The ELISA results indicated that the VP7::RTB fusion protein was biologically active and made up approx 0.03% of total soluble transformed tuber protein. The biosynthesis of receptor binding VP7::RTB fusion protein in potato tissues demonstrates the feasibility of producing monomeric ricin toxin B subunit adjuvant-virus antigen fusion proteins in crop plants for enhanced immunity.  相似文献   

20.
The particle gun, cocultivation withAgrobacterium tumefaciens, and imbibition in DNA solutions were compared as methods to transfer DNA into mature and immature pollen ofNicotiana tabacum. Bombardment of mature pollen with the β-glucuronidase gene cloned behind the pollen-specific PA2 promoter of the chalcone isomerase gene ofPetunia hybrida resulted in the expression of the β-glucuronidase gene in 0.025% of the pollen grains. Bombardment of younger stages followed byin vitro maturation also resulted in the formation of mature pollen that expressed β-glucuronidase, although at a lower frequency. Cocultivation of pollen duringin vitro maturation orin vitro germination withAgrobacterium tumefaciens did not yeild β-glucuronidase-expressing pollen. In these cases, an intron-containing β-glucuronidase gene was used which effectively prevented β-glucuronidase expression in the bacteria. Imbibition of mature, dry pollen in various DNA solutions of the same constructs also did not lead to the formation of β-glucuronidase expressing pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号