首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been observed earlier that gastric cytoprotection produced by PGI2, beta-carotene, small doses of atropine or cimetidine has failed in surgically vagotomized rats. This phenomenon may be in connection with endogenous prostaglandins (PGs) and glutathione (GSH) level of the gastric mucosa. The aims of the study were to evaluate the effect of vagus nerve on the gastric mucosal 6-keto-PGF1 alpha, PGE2 and glutathione after intragastric 96% ethanol (ETOH) treatment. The observations were carried out on CFY rats. The gastric mucosal damage was produced by intragastric administration of 1 ml 96% ETOH. Acute bilateral surgical vagotomy (ASV) was carried out 30 min prior to ETOH application. The animals were sacrificed 1, 5, 15 or 60 min after ETOH installation. The number and the severity of gastric mucosal lesions were noted and 6-keto-PGF1 alpha, PGE2 an GSH contents of gastric mucosa were measured. It has been found that: 1. the number and the severity of gastric mucosal lesions were increased after ASV compared to those with intact vagal nerve, 2. 96% ETOH treatment increased both the gastric mucosal PGs and GSH levels, 3. 6-keto-PGF1 alpha peaked at 5 min PGE2 and GSH peaked at 15 min after ETOH treatment, 4. ASV decreased the gastric mucosal PGs content and delayed the peaks of PGE2 and GSH. It has been concluded that the decreased content of PGs and the delayed GSH increase may play a pathological role in the failure of gastric cytoprotection of rats after ASV.  相似文献   

2.
The cytoprotective effect of a small dose of atropine was proved against the indomethacin (IND)-caused gastrointestinal (GI) mucosal damage. This protective effect of atropine disappeared in the acute phase of surgical vagotomy (ASV) on the vagally-innervated parts of GI tract. The aims of our observations were: 1) to examine the effect of chronic surgical vagotomy (CSV) on the cytoprotective action of atropine in the GI tract; and 2) to compare the effects of ASV and CSV on the GI cytoprotection caused by atropine against IND-induced mucosal damage and vascular permeability in rats. The IND was given s.c. 24 h prior to the killing of the animals in a dose of 20 mg x kg(-1). Bilateral surgical vagotomy or sham operation were carried out 24 h (ASV) or 14 d (CSV) before IND-application. Atropine was given i.p. every 5 h after IND-treatment in a dose of 0.1 mg x kg(-1). The number of macroscopical mucosal ulcerations was noted and its severity was calculated by semiquantitative scale in the stomach, small intestine and three equal parts of colon. Vascular permeability was measured by Evans-blue leakage into the mucosal tissue. It has been found that: 1) Tte small dose of atropine significantly decreased the IND-induced mucosal damage and vascular permeability on the stomach, small intestine and the vascular permeability on the proximal colon; 2) the small dose of atropine did not cause any changes in the appearance of IND-induced mucosal lesions and in Evans blue concentration in the mucosa after ASV, but it significantly decreased the IND-caused mucosal damage and Evans blue concentration in the mucosa of stomach, small intestine and proximal colon after CSV; 3) the IND-induced mucosal damage and vascular permeability treated with atropine (given in cytoprotective dose) were significantly smaller after CSV than that after ASV on the stomach, small intestine and proximal colon. It has been concluded that the intact vagal nerve has an essential role in the appearance of cytoprotective mechanisms of atropine in GI tract.  相似文献   

3.
An essential role for an intact vagal nerve has been proven in the development of gastric mucosal cyto- and general protection. On the other hand, chemically-induced (ethanol, HCl, indomethacin) gastric mucosal damage is enhanced after acute surgical vagotomy. The aims of this paper were to study the possible mechanisms of the vagal nerve in the development of gastric mucosal defense. The following questions were addressed: 1) effect of surgical vagotomy on the development of ethanol- (ETOH), HCl-, and indomethacin (IND)-induced gastric mucosal damage; 2) changes in the gastric mucosal defense by scavengers, prostacyclin and other compounds (small doses of atropine and cimetidine: 3) changes in the gastric mucosal vascular permeability due to chemicals; 4) effect of indomethacin in the ETOH and HCl models with and without surgical vagotomy; 5) changes in the gastric mucosal content of prostacyclin and PGE2 in the ETOH and HCl models after surgical vagotomy; and 6) changes in the role of SH-groups in gastric mucosal defense after surgical vagotomy. It was found that: 1) the gastric mucosal damage produced by chemicals (ETOH, HCl, and indomethacin) was enhanced after surgical vagotomy; 2) the cyto- and general gastric protective effects of β-carotene, prostacyclin, and small doses of atropine and cimetidine disappeared after surgical vagotomy; 3) the vascular permeability due to chemicals (ETOH, HCl, indomethacin) significantly increased after surgical vagotomy in association with an increase in both number and severity of gastric mucosal lesions; 4) IND alone (in animals with an intact vagus) did not produce gastric mucosal lesions (in 1-h experiments), but it aggravated ETOH-induced gastric mucosal damage (both its number and severity); 5) the gastric mucosal levels of prostacyclin and PGE2 decreased after surgical vagotomy; 6) IND application (after surgical vagotomy) decreased further the tissue levels of prostacyclin and PGE2 in association with an increase of gastric mucosal damage; and 7) the gastric mucosal protective effects of SH-groups were abolished by surgical vagotomy.  相似文献   

4.
The biochemical background of ethanol-(ETOH) induced gastric mucosal damage was studied in rats with intact vagus and after acute surgical vagotomy. Observations were carried out on Sprague-Dawley (CFY) strain rats of both sexes. Gastric mucosal lesions were produced by intragastric administration of 1 ml 96% ethanol. Bilateral truncal surgical vagotomy was carried out 30 min before ETOH administration. The number and severity of gastric mucosal lesions was noted 1 h after ETOH administration. Biochemical measurements (gastric mucosal level of ATP, ADP, AMP, cAMP and lactate) were carried out from the total homogenized gastric mucosa. The adenylate pool (ATP + ADP + AMP), energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) and ratio of ATP/ADP were calculated. It was found that: 1) ATP transformation into ADP increased, while ATP transformation in cAMP decreased in ethanol-treated animals with intact vagus nerve, while these transformations were quite the opposite in vagotomized animals; 2) no significant changes were found in the tissue level of lactate: and 3) the extent of biochemical changes was significantly less after surgical vagotomy. It is concluded that an intact vagus is basically necessary for the metabolic adaptation of gastric mucosa.  相似文献   

5.
As to earlier observations that beta-carotene prevents the development of gastric mucosal injury produced by different noxious agent, however, its cytoprotective effect can be abolished by acute surgical vagotomy. The aim of this study was to evaluate the possible correlation between the gastric mucosal cytoprotective effect of beta-carotene and its gastric mucosal level in rats treated with IND. The gastric mucosal damage was produced by the administration of IND (20 mg/kg s.c.). The instillation of beta-carotene and acute surgical vagotomy (ASV) or SHAM operation were carried out 30 min before IND treatment. The rats were sacrificed 4 h after IND application, and the number and severity of gastric mucosal erosions were noted. The blood rats was collected quantitatively, the liver and the gastric mucosa were removed, and the beta-carotene and vitamin A level of the gastric mucosa, serum and liver were measured with HPLC. It was found that: 1. Beta-carotene induced gastric cytoprotection in SHAM-operated rats treated with IND but its effect disappeared after ASV. 2. Although the beta-carotene level of the gastric mucosa increased its concentration was not elevated in the serum of intact and vagotomized animals either. 3. Vitamin A Formation was not detected in the liver of animals with or without ASV. It was concluded that the lack of intake of beta-carotene into the gastric mucosa can not play etiologic role in the failure of gastric cytoprotection of rats with acute bilateral surgical vagotomy.  相似文献   

6.
The mechanism of the protection by human epidermal growth factor (hEGF) against the gastric mucosal lesions induced by acidified ethanol was studied in rats. At different times following the subcutaneous administration of hEGF (30 micrograms/kg), intragastric acidified ethanol (EtOH: 0.125 M HC1 = 50:50 v/v%) was administered to induce an experimental gastric mucosal lesion. Mean length of the lesion in the gastric mucosa was used as a lesion index. Extravasation of intravenously injected Evans blue into the gastric wall and gastric contents was used as an indicator of vascular permeability. Pretreatment with hEGF decreased both the gastric mucosal lesions and the increase of vascular permeability caused by acidified ethanol with similar time profiles relative to pretreatment with hEGF. Maximal protective actions of hEGF occurred about 10 to 30 min after the observed peak plasma concentration of hEGF. Indomethacin and N-ethylmaleimide, but not iodoacetamide, blocked the protective action of hEGF, indicating that endogenous prostaglandins and/or sulfhydryls may participate in the protective action of hEGF. The content of endogenous nonprotein sulfhydryls in the gastric mucosa decreased markedly after acidified ethanol. However, pretreated hEGF did not restore the sulfhydryl contents. Thus, it seemed that endogenous prostaglandins, but not sulfhydryls, are the probable mediators for protection against gastric mucosal injury caused by acidified ethanol.  相似文献   

7.
The non-steroidal antiinflammatory drugs, such as an indomethacin (IND), cause mucosal ulceration and increase the mucosal vascular permeability in the gastrointestinal (GI) tract. Some exogenous agents, e.g. the atropine, can protect the GI mucosa against these ulcerogenic effects. The gastrointestinal functions and mucosal protection, however, are regulated by the vagal nerve. The aims of this study was to examine the dependence of atropine-induced GI cytoprotection to the vagal innervation against the development of IND-caused ulcers and microvascular damage in the mucosa of stomach and small intestine in rats. METHODS: the observations were carried out on CFY-strain rats. The mucosal damage was produced by subcutaneous administration of IND in a 20 mg/kg dose 24 h prior to the killing of animals at the same time as the start of atropine-application, which was given in a small dose (0.1 mg/kg) every 5 h. The subdiaphragmatic bilateral surgical vagotomy was done 24 h before the experiment. The vascular permeability, indicated by the microvascular endothel damage, was measured by the appearance and concentration of intravenously administered Evans blue into the GI mucosa. The number and severity of mucosal lesions and the Evans blue content of mucosa were determined in the stomach and small intestine. RESULTS: (1) The IND caused mucosal ulcers and Evans blue extravasation into the mucosa of the stomach and small intestine. (2) The IND-induced mucosal ulceration and vascular permeability significantly decreased after atropine-administration in the same parts of GI tract. (3) The extent of cytoprotective effect of atropine against the IND was decreased after bilateral surgical vagotomy. CONCLUSIONS: (1) The IND causes microvascular endothel damage in the stomach and small intestinal. (2) The atropine has a cytoprotective effect in the stomach and small intestine against the aggressive effects of IND without decrease of gastric acid secretion. (3) The intact vagal nerve is necessary to the function of cytoprotective mechanisms of atropine against the IND.  相似文献   

8.
Previously it was proved that intact vagal nerve is basically necessary for the development of gastric cytoprotection. The aims of this study were to receive further data about the role of vagal nerve in the development of gastric mucosal damage. The observations were carried out on Sprague-Dawley rats. Acute bilateral surgical vagotomy was done with pylorus ligation and/or indomethacin (IND) treatment (20 mg/kg, sc.) at the time of operation. The animals were sacrificed 4 h after the operation. The number, the severity (semiquantitative method), the mean size and summed surface (computer assisted quantitative method) of gastric mucosal damage, the H+ output and the mucosal PGE2 level were determined. It has been found that 1) the ASV itself (without IND or pylorus ligation) provoked gastric mucosal damage, which was more severe than in the pylorus ligated animals at 4 h; 2) IND was able to reduce the summed surface of mucosal damage after ASV; 3) ASV aggravated the gastric mucosal damage in pylorus ligated animals in spite of the decreased H+ output; 4) the PGE2 level was lower in vagotomized and vagotomized+pylorus ligated animals then in the control group, and the IND did not cause further decrease in its level after ASV. It has been concluded that the balance between aggressive and defensive factors of gastric mucosa was shifted to the aggressive side in surgically vagotomized animals.  相似文献   

9.
Accumulating evidence suggests that central thyrotropin-releasing hormone (TRH) administration induces gastric erosion 4 h after administration through the vagal nerves. However, early changes in the gastric mucosa during these 4 h have not been described. To assess early changes in the gastric mucosa after intracisternal injection of a stable TRH analog, pGlu-His-(3,3'-dimethyl)-ProNH2 (RX-77368), we measured the blood-to-lumen 51Cr-labeled EDTA clearance and examined the effects of vagotomy, atropine, omeprazole, and hydrochloric acid (HCl) on RX-77368-induced mucosal permeability. A cytoprotective dose of RX-77368 (1.5 ng) did not increase mucosal permeability. However, higher doses significantly increased mucosal permeability. Permeability peaked within 20 min and gradually returned to control levels in response to a 15-ng dose (submaximal dose). Increased mucosal permeability was not recovered after a 150-ng dose (ulcerogenic dose). This increase in permeability was inhibited by vagotomy or atropine. Intragastric perfusion with HCl did not change the RX-77368 (15 ng)-induced increase in permeability, but completely inhibited the recovery of permeability after the peak. Pretreatment with omeprazole did not change the RX-77368 (15 ng)-induced increase in permeability, but quickened the recovery of permeability after the peak. These data indicate that the RX-77368-induced increase in permeability is mediated via the vagal-cholinergic pathway and is not a secondary change in RX-77368-induced acid secretion. Inhibited recovery of permeability on exposure to an ulcerogenic RX-77368 dose or on exposure to HCl plus a submaximal dose of RX-77368 may be crucial for the induction of gastric mucosal lesions by central RX-77368 administration.  相似文献   

10.
BACKGROUND: Our laboratory group observed earlier that the gastric mucosal cytoprotective effect of prostacyclin (PGI(2)) disappeared after surgical vagotomy in rats. Similarly to this, the beta-carotene induced gastric cytoprotection disappeared in adrenalectomized rats too. AIMS: In these studies we aimed to investigate the possible role of vagal nerve and adrenals in the development of gastric mucosal lesions induced by exogenously administered chemicals (ethanol, HCl, NaOH, NaCl and indomethacin), and on the effects of cytoprotective and antisecretory drugs (atropine, cimetidine), and scavengers (vitamin A and beta-carotene). METHODS: The observations were carried out in fasted CFY strain rats. The gastric mucosal lesions were produced by intragastric (i.g.) administration of narcotising agents (96% ethanol; 0.6 M HCl; 0.2 M NaOH; 25% NaCl) or subcutaneously (s.c.) administered indomethacin (20 mg/kg) in intact, surgically bilaterally vagatomized, and adrenalectomized rats without or with glucocorticoid supplementation (Oradexon, 0.6 mg/kg given i.m. for 1 week). The gastric mucosal protective effect of antisecretory doses of atropine (0.1-0.5-1.0 mg/kg i.g.) and cimetidine (10-25-50 mg/kg i.g.), and vitamin A and beta-carotene (0.01-0.1-1.0-10 mg/kg i.g.) was studied. The number and severity of mucosal gastric lesions was numerically or semiquantitatively measured. In other series of observations the gastric acid secretion and mucosal damage were studied in 24 h pylorus-ligated rats without and with acute bilateral surgical vagotomy. RESULTS: It was found that: (1) the chemical-induced gastric mucosal damage was enhanced in vagotomized and adrenalectomized rats, meanwhile the endogenous secretion of gastric acid, and the development of mucosal damage can be prevented by surgical vagotomy; (2) the gastric cyto- and general protection produced by the drugs and scavengers disappeared in vagotomized and adrenalectomized rats; (3) the gastric mucosal protective effects of drugs and of scavengers returned after sufficient glucocorticoid supplementation of the rats. CONCLUSION: It has been concluded that the intact vagal nerve and adrenals have a key role in the gastric mucosal integrity, and in drugs- and scavengers-induced gastric cyto- and general mucosal protection.  相似文献   

11.
Vascular factors play an important role in the pathogenesis and prevention of acute gastric mucosal lesions. Endothelin-3 (ET-3), a potent vasoactive peptide, was infused intra-arterially to induce gastric microvascular and hemorrhagic mucosal lesions, and to enhance the damaging effects of dilute HCl and ethanol. ET-3 antibody was injected intravenously to decrease hemorrhagic mucosal lesions induced by ethanol. Locally infused ET (0.01, 0.1, and 1.0 nmol.100 g-1.min-1 for up to 15 min) was followed in some cases by intragastric dilute ethanol or HCl, which alone caused no or only mild vascular and mucosal lesions. Monastral blue was used to visualize and quantify vascular injury. ET-3 produced dose-dependent vascular lesions that affected the walls of mucosal capillaries and venules and induced mucosal congestion and focal endothelial labeling in vessels of the gastric muscular layers. The highest dose of ET induced hemorrhagic gastric mucosal lesions, mortality, and periods of hyper- and hypotension in the rat. Medium and low doses of ET-3 caused vascular injury, and dose-dependently potentiated the vascular and hemorrhagic mucosal lesions caused by dilute HCl and ethanol. Indomethacin slightly enhanced damage induced by ET and 50% ethanol, suggesting a limited mediatory role of prostaglandins in the ET-induced mucosal lesions. Anti-ET-3 serum dose-dependently decreased but did not abolish the hemorrhagic gastric mucosal lesions induced by 75% ethanol. Thus, ET-3 causes endothelial damage in capillaries and venules of rat stomach and predisposes to mucosal damage even after exposure to dilute ethanol or HCl. ET is more potent than leukotrienes and histamine and thus may play an important role in the mechanisms of acute gastric mucosal injury and protection where the vascular network appears to be a major target.  相似文献   

12.
《Life sciences》1997,62(1):PL13-PL18
The influence of pretreatment with (R)-α-methylhistamine, selective agonist of histamine H3 receptors, has been investigated on gastric mucosal lesions at different time intervals, from 5 to 60 minutes, after administration of absolute ethanol in the rat. The amount and depth of lesions were quantitatively evaluated by light microscopy. In rats pretreated with (R)-α-methylhistamine, the integrity of the mucosa was preserved in approximately 80% of the total mucosal length measured despite ethanol challenge. Prevention of lesion formation was as great at 5 min after ethanol administration as at 60 min. When present, damage involved mainly superficial mucosa and lesions extending deeply into the gland region were evident in 1–2.5% of the total mucosa. Present findings indicate that mechanisms by which (R)-α-methylhistamine operates enable the mucosa to counteract damage just from the moment of exposure to ethanol and that protection is exerted both on surface and pit cells and on gastric glands.  相似文献   

13.
Stomach lesions induced by indomethacin (20 mg.kg-1 i.p.) and ethanol (1 ml 95% intragastrically) were studied after a 24 hour fast in rats which had undergone sialoadenectomy. The size of the lesions was correlated with gastric HCl secretion, with gastric vascular permeability (determined from the Evans blue concentration in the stomach tissue after its i.v. administration) and with the serum gastrin level. These parameters were also studied in sialoadenectomized rats and in animals given epidermal growth factor (EGF) (50 lg.kg-1). It was found that sialoadenectomy significantly (p < 0.01) raised the incidence of stomach lesions after the administration of indomethacin and also after ethanol (p < 0.05). A significant increase in both basal and stimulated HCl secretion was found after sialoadenectomy. Both indomethacin and ethanol also increased gastric vascular permeability in rats not subjected to sialoadenectomy, but sialoadenectomy raised it significantly compared with the non-sialoadenectomized group. The serum gastrin levels fell after sialoadenectomy and the decrease was significant after the subsequent administration of indomethacin or ethanol. The administration of EGF to sialoadenectomized rats lowered the incidence of stomach lesions, inhibited HCl secretion and reduced vascular permeability. The lowered susceptibility of the gastric mucosa to the formation of lesions in sialoadenectomized rats given indomethacin or ethanol can be regarded as the outcome of the uptake of EGF.  相似文献   

14.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

15.
F Diel  S Szabo 《Regulatory peptides》1986,13(3-4):235-243
Somatostatin prevents hemorrhagic gastric erosions produced by ethanol. In this paper we describe studies with linear (reduced) and cyclic (oxidized) synthetic somatostatin-14 in the rat model of ethanol-induced gastric mucosal injury. The linear form of somatostatin was more potent at concentrations of 10(-9) to 10(-8) mol per rat than the cyclic isomere. However, at a concentration of 10(-7) mol per rat i.p. injection of linear somatostatin significantly (P less than 0.01) enhanced gastric erosions caused by the alcohol. The area of hemorrhagic mucosal lesions correlated significantly (r = -0.846) with mast cell depletion in the gastric mucosa of the animals. Increased vascular permeability and mast cell degranulation were also observed after intradermal injection of linear or cyclic somatostatin. The 'cytoprotective' as well as the aggravating potency of linear somatostatin may be connected to gastric mucosal mast cell activity in the rat.  相似文献   

16.
Role of sulfhydryls and early vascular lesions in gastric mucosal injury   总被引:3,自引:0,他引:3  
This paper reviews the recently discovered role of sulfhydryls and early vascular injury in the pathogenesis of acute gastric mucosal injury. In the rat ethanol caused a dose-dependent decrease in nonprotein sulfhydryl concentration in the gastric mucosa within 1-5 min following an intragastric dose. These biochemical changes were accompanied by increased vascular permeability in the glandular stomach as revealed by the measurement of extravasated Evans blue injected i.v. prior to the administration of ethanol. Morphologic evidence of vascular injury was provided by labelling of damaged blood vessels in the stomach following the i.v. administration of colloidal particles in the form of india ink or monastral blue. The functional and structural damage to capillaries and venules in the glandular stomach was also maximal within 1-6 min after 1 ml of 75 or 100% ethanol given orally. Pretreatment with sulfhydryl (SH) containing drugs (e.g., L-cysteine, N-acetyl-L-cysteine, cysteamine, dimercaprol) or prostaglandin (PG) F2 beta prevented the ethanol-induced increase in vascular permeability, the labelling of blood vessels with vascular tracers, and the subsequent haemorrhagic erosions. The desquamation of superficial epithelial cells, however, was not markedly modified by either SH or PG compounds. This organoprotective effect of SH and PG drugs was virtually counteracted in adrenalectomized rats that exhibited "vascular fragility". Glucocorticoid treatment restored the response of adrenalectomized animals. Thus, a SH- and glucocorticoid-sensitive early vascular injury seems to be of major significance in the pathogenesis of haemorrhagic gastric erosions and SH-containing compounds represent a new group of cytoprotective or organoprotective agents.  相似文献   

17.
The effects of PGE2 and its stable analogue, 16,16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol in-vivo, produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF1 alpha was unaffected. Challenge of the rat gastric mucosa in vitro with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF1 alpha. Pretreatment with PGE2 (200-500 micrograms/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20 micrograms/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close to the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

18.
We demonstrated that prostaglandin (PG) E2 aggravates gastric mucosal injury caused by histamine in rats, and investigated using various EP agonists which EP receptor subtype is involved in this phenomenon. Rats were used after 18 hr fasting. Histamine (80 mg/kg) dissolved in 10% gelatin, was given s.c., either alone or in combination with i.v. administration of PGE2 or various EP agonists such as 17-phenyl PGE2 (EP1), butaprost (EP2), sulprostone (EP1/EP3), ONO-NT012 (EP3) and ONO-AE1-329 (EP4). The animals were killed 4 hr later, and the mucosa was examined for lesions. The mucosal permeability was determined using Evans blue (1%). Histamine alone induced few lesions in the gastric mucosa within 4 hr. PGE2 dose-dependently worsened the lesions induced by histamine, the response being inhibited by tripelennamine but not cimetidine. The effect of PGE2 was mimicked by 17-phenyl PGE2 and sulprostone, but not other EP agonists, including EP2, EP3, and EP3/EP4 agonists. The mucosal vascular permeability was slightly increased by histamine, and this response was markedly enhanced by co-administration of 17-phenyl PGE2 as well as PGE2. The mucosal ulcerogenic and vascular permeability responses induced by histamine plus PGE2 were both suppressed by pretreatment with ONO-AE829, the EP1 antagonist. These results suggest that PGE2 aggravates histamine-induced gastric mucosal injury in rats. This action of PGE2 is mediated by EP1 receptors and functionally associated with potentiation of the increased vascular permeability caused by histamine through stimulation of H1-receptors.  相似文献   

19.
The changes in membrane-bound ATP systems (breakdown and resynthesis) were analyzed in different experimental ulcer models (such as ETOH, HCl, NaOH, 25% NaCl-induced, pyloric ligated + epinephrine treated, stress, reserpine treated, indomethacin treated rat models) and chronic antral, duodenal and jejunal ulcers in patients. The energy system parameters (adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP (cAMP), lactate) were measured from different sites of gastrointestinal mucosa, and values of ATP/ADP, adenylate pool (ATP + ADP + AMP) and energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) were calculated. The biochemical measurements were done at different times during the development of gastrointestinal mucosal lesions, without and with application of different drugs (PGI2, atropine, cimetidine) and bilateral surgical vagotomy. The aims of our present paper were: 1.) To summarize the main directions of ATP breakdown during the development of gastrointestinal lesions or ulcers in different experimental models and human beings: 2.) To summarize the biochemical steps of defense of gastrointestinal mucosa against chemicals, drugs or unknown pathogenic factors; 3.) To analyze the importance of membrane-bound ATP-dependent energy systems in order to understand the mucosal lesions and their prevention; 4.) To evaluate the real values of changes in these parameters from the point of view of ulcerogenesis and its prevention; 5.) To find some correlation between the energy parameters during mucosal damage and its prevention: 6.) To understand better the types of tissue reactions (metabolic) due to development of mucosal lesions and prevention.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
J Puurunen  H Karppanen 《Life sciences》1975,16(10):1513-1520
The effect of ethanol on the secretion of gastric acid and the content of cyclic AMP of the gastric mucosa was studied in rats. Intravenously, ethanol (10 to 800 mg/kg) had no effect on the output of acid. Upon local application into the stomach, ethanol (1 to 10%) caused a concentration-dependent inhibition of the output of gastric acid. The effect was evident within 5 min. At the concentration of 1 %,ethanol decreased the rate of acid secretion maximally by about 30%. At the concentration of 3 %, the maximal inhibition was about 70 %. At the concentration of 10 %, ethanol caused a total cessation of the output of acid within 20 to 60 min.Five and 25 min after the administration of 10 % ethanol into the stomach, the gastric mucosal content of cyclic AMP was decreased by approximately 50 %. Also in vitro, the mucosal content of cyclic AMP was decreased by ethanol within 5 min. The decrease was about 30 % with 2.5 % ethanol, approximately 60 % with 10 % ethanol, and approximately 45 % with 20 % ethanol. Alcohol inhibited the activity of the cyclic AMP phosphodiesterase of the gastric mucosa in a competitive manner. The Ki-value was 0.16 M which would correspond to an alcohol concentration of 9.1 % (v/v). Ethanol caused a concentration-dependent inhibition of the activity of the gastric mucosal adenyl cyclase. By 0.166 M (9.4 %) alcohol the inhibition was nearly 100 %.It is concluded that the ethanol-induced decrease of cyclic AMP in the gastric mucosa is due to a decreased formation of the nucleotide. The accompanying inhibition of the output of acid by ethanol is consistent with the view that cyclic AMP is an intracellular regulator of the gastric acid secretion. In view of the role of cyclic AMP in the control of the integrity of the cells, it is suggested that the ethanol-induced damage of gastric mucosa might also be, at least partly, due to the decreased mucosal content of cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号