首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. The fourth and fifth EGF-like domains of TM together form the minimal fragment with anticoagulant cofactor activity. A short linker connects the fourth and fifth EGF-like domains of TM, and Met 388 in the middle of the linker interacts with both domains. Several different structures of TMEGF45 variants are now available, and these show that mutation of Met 388 alters the structure of the fifth domain, as well as the connectivity of the two domains. To probe this phenomenon more thoroughly, NMR backbone dynamics experiments have been carried out on the individual fourth and fifth domains as well as on the wild type, the Met 388 Leu mutant, and the variant in which Met 388 is oxidized. The results presented here show that changes at Met 388 cause significant changes in backbone dynamics in both the fourth and fifth EGF-like domains of TM. Backbone dynamics within the small loop of the fourth domain Tyr 358 correlate with anticoagulant cofactor activity. Backbone dynamics of the thrombin-binding residues Tyr 413 and Ile 414 are inversely correlated with thrombin binding. The preordering of the backbone of Tyr 413 and Ile 414 only occurs in the two-domain fragments, revealing a role for the fourth domain in thrombin binding as well as in anticoagulant cofactor activity.  相似文献   

2.
Thrombomodulin (TM) functions as a cofactor to enhance the rate of protein C activation by thrombin approximately 1000-fold. The molecular mechanism by which TM improves the catalytic efficiency of thrombin toward protein C is not known. Molecular modeling of the protein C activation based on the crystal structure of thrombin in complex with the epidermal growth factor-like domains 4, 5, and 6 of TM (TM456) predicts that the binding of TM56 to exosite 1 of thrombin positions TM4 so that a negatively charged region on this domain juxtaposes a positively charged region of protein C. It has been hypothesized that electrostatic interactions between these oppositely charged residues of TM4 and protein C facilitate a proper docking of the substrate into the catalytic pocket of thrombin. To test this hypothesis, we have constructed several mutants of TM456 and protein C in which charges of the putative interacting residues on both TM4 (Asp/Glu) and protein C (Lys/Arg) have been reversed. Results of TM-dependent protein C activation studies by such a compensatory mutagenesis approach support the molecular model that TM4 interacts with the basic exosite of protein C.  相似文献   

3.
Single-stranded DNA molecules containing a 15-nucleotide consensus sequence have been reported to inhibit thrombin activity. The mechanism of the inhibition was studied using a consensus 15-mer oligonucleotide and two recombinant mutant thrombins: the anion-binding exosite mutant thrombin R70E, and thrombin K154A, in which the mutation was located in a surface loop outside of the exosite. The consensus 15-mer oligonucleotide inhibited both fibrinogen-clotting and platelet-activation activities of plasma-derived thrombin, recombinant wild type thrombin, and mutant thrombin K154A in a sequence-specific and dose-dependent manner, whereas it did not inhibit either activity of mutant thrombin R70E. The 15-mer oligonucleotide also inhibited thrombomodulin-dependent protein C activation by plasma-derived thrombin. In competition equilibrium binding experiments, binding of 125I-labeled diisopropyl phosphoryl-thrombin to thrombomodulin was completely inhibited by the consensus 15-mer oligonucleotide with a Kd value of 2.68 +/- 0.16 nM. These results suggest that Arg-70 in the anion-binding exosite of thrombin is a key determinant for interaction with specific single-stranded DNA molecules, and that binding of single-stranded DNA molecules to the exosite prevents the interaction of thrombin with fibrinogen, the platelet thrombin receptor, and thrombomodulin.  相似文献   

4.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

5.
Tolkatchev D  Ng A  Zhu B  Ni F 《Biochemistry》2000,39(34):10365-10372
The interaction of thrombin with a 28-residue peptide corresponding to the N-terminal subdomain of the sixth EGF-like repeat of human thrombomodulin plus the junction between the fifth and the sixth EGF-like domains was characterized in solution by use of NMR spectroscopy, particularly differential resonance perturbations and transferred nuclear Overhauser effects (transferred NOEs). The EGF-like thrombomodulin fragment, or hTM422-449, is conformationally flexible in the absence of thrombin. Upon addition of thrombin, differential resonance perturbations and transferred NOEs are observed for the thrombomodulin peptide, suggesting specific and rapidly reversible binding and structuring of hTM422-449 in complex with thrombin. Residue-specific analysis of the differential line broadening, resonance shifts, and transferred NOEs identified regions of hTM422-449 responding to thrombin binding as the N-terminal residues Thr422-Ile424 and residues His438-Ile447 corresponding to the central beta-hairpin, or B-loop, of the consensus EGF-like repeat. The formation of the beta-hairpin is supported by the pattern of transferred NOEs bringing the two beta-strands together and characterizing a type I beta-turn. Docking of the thrombomodulin peptide to the anion-binding exosite I of thrombin revealed structural details capturing binding contacts identified so far as essential for the thrombin-thrombomodulin interaction. Definition of specific interactions between thrombin and a minimal fragment of the sixth EGF-like domain of human TM may lead to the discovery of new peptidomimetic molecules as modulators of blood coagulation.  相似文献   

6.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

7.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

8.
Thrombin stimulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelial cells (HUVEC) requires the active site of thrombin and involves rapid and transient rises in cytoplasmic free calcium [Ca2+]i. In this study, we investigated whether or not the anion-binding exosite for fibrinogen recognition of thrombin (which confers certain substrate specificities) is also necessary for the induction of rises in [Ca2+]i and PGI2 production. Thrombin variants which lack either the catalytic site (DIP-alpha-thrombin) or anion-binding exosite (gamma-thrombin) either alone or in combination failed to induce rises in [Ca2+]i or PGI2 production in HUVEC. To further study the role of the anion-binding exosite of thrombin in the activation of HUVEC, COOH-terminal fragments of hirudin were used. This portion of hirudin interacts with the anion-binding exosite of thrombin and inhibits thrombin-induced fibrinogen coagulation while leaving the catalytic activity of thrombin intact. A 21-amino acid COOH-terminal peptide of hirudin (N alpha-acetyldesulfato-hirudin45-65 or Hir45-65) inhibited thrombin-induced (0.5 U/ml) rises in [Ca2+]i and PGI2 production with IC50 of 0.13 and 0.71 microM, respectively. Similar results were obtained using shorter hirudin-derived peptides. Thus, the fibrinogen anion-binding exosite of thrombin is required for alpha-thrombin-induced rises in [Ca2+]i and PGI2 production in HUVEC.  相似文献   

9.
Single-chain urokinase-type plasminogen activator (scu-PA) can be cleaved by thrombin into a virtually inactive form called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T), a process accelerated by thrombomodulin, which contains six epidermal growth factor (EGF)-like domains. In this study, we identified the EGF-like domains of thrombomodulin required for the acceleration of the inactivation of scu-PA by thrombin using various forms of thrombomodulin (TM). scu-PA was treated with thrombin in the absence and presence of full-length rabbit TM (containing EGF1-6), recombinant TM comprising all of the extracellular domains including EGF1-6 (TMLEO) and recombinant TM comprising EGF4-6 plus the interconnecting region between EGF3 and EGF4 (TMEi4-6), and the tcu-PA/T generated was quantitated in each case. Rabbit TM accelerated the inactivation of scu-PA approximately 35-fold, while both recombinant forms accelerated it only threefold due to the absence of a critical chondroitin sulfate moiety. Subsequently, TME5-6 was prepared by cyanogen bromide digestion of TMEi4-6. TME5-6 bound to thrombin but did not accelerate the activation of protein C. In contrast, the inactivation of scu-PA by thrombin was accelerated to the same extent as that induced by TMLEO and TMEi4-6. This study demonstrates that, in addition to the chondroitin sulfate moiety, only EGF-like domains 5 and 6 are essential for the acceleration of the inactivation of scu-PA by thrombin. This differs from the domains that are critical for activation of protein C (EGF-like domains i4-6) and thrombin activatable fibrinolysis inhibitor (EGF-like domains 3-6).  相似文献   

10.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

11.
Thrombomodulin, an endothelial thrombin receptor, acts as a cofactor for the thrombin-catalyzed activation of anticoagulant protein C. The extracellular region of human thrombomodulin consists of three tentative domains, a NH2-terminal domain (D1), a domain involving six consecutive epidermal growth factor-like structures (D2), and an O-glycosylation-rich domain (D3). To identify the domain onto which thrombin binds, a series of recombinant proteins corresponding to the entire protein, D1, D2, D1 + D2, D1 + D2 + D3, and D2 + D3 were expressed in simian COS-1 cells. The proteins were partially purified by rabbit anti-thrombomodulin-F(ab')2-agarose chromatography. Western blotting analysis showed the expression of the respective recombinant proteins. All proteins involving D2, as well as D2 alone, had cofactor activity that allowed binding directly to thrombin, but D1 did not. The cofactor activity of the entire protein but not the mutants is increased in the presence of phospholipids and this is the only protein that binds to the phospholipid layer. These results indicate that the domain involving the epidermal growth factor-like structures of thrombomodulin is essential for thrombin binding and expression of the cofactor activity for protein C activation and that none of the extracellular domains interact with phospholipids.  相似文献   

12.
Song J  Xu P  Koutychenko A  Ni F 《Biopolymers》2002,65(6):373-386
The relationship between the free and bound conformations of bioactive peptides is explored using the epidermal growth factor (EGF)-like thrombomodulin fragment hTM409-426 as a model system. The hTM409-426 peptide has a sequence of C(409)PEGYILDDGFIC(421)TDIDE (with a disulfide bond between Cys409 and Cys421) and is a selective inhibitor of thrombin. Upon binding to thrombin, hTM409-426 adopts a well-defined conformation-namely, a beta-turn followed by an antiparallel beta-sheet, similar to those found in all other EGF-like protein repeats (Hrabal et al., Protein Science, 1996, Vol. 5, 195-203). Here we demonstrate that, at pH 6.8 and at 25 degrees C, the hTM409-426 peptide in the free state is very flexible, but still populates a type II beta-turn over residues Pro410-Glu411-Gly412-Tyr413 and the clustering of some hydrophobic side chains, both of which are present in the thrombin-bound conformation. At a lower temperature of 5 degrees C, significant conformational shifts of the C alpha H proton resonances and extensive medium- and long-range NOEs are observed, indicating the presence of folded conformations with unique backbone-backbone and side-chain interactions. A comparison of the NOE patterns in the free state with transferred NOEs shows that the free-state folded and the thrombin-bound conformations of the hTM409-426 peptide are very similar, particularly over residues Pro410-Ile424. The folded conformation of hTM409-426 appears to be stabilized by two hydrophobic clusters, one formed by the side chains of residues Pro410, Tyr413, Leu415, and Phe419 and the Cys409-Cys421 disulfide bond, the second involving residues Ile414 and Ile424. These results indicate that the overall topology of the thrombin-bound conformation of the hTM409-426 peptide is prefolded in the free state and the primary sequence (including the disulfide bond) may be selective for an ensemble of conformations similar to that recognized by thrombin.  相似文献   

13.
Structure-function relationships in the 6 epidermal growth factor-like domains of human thrombomodulin (TME, residues 227-462) were studied by deletion mutagenesis. Purified and characterised proteins were used for kinetic studies. Deletion of EGF1, EGF2 and residues 310-332 in EGF3 had no effect on thrombin binding (Kd) or on kcat/KM for protein C activation by the thrombin-thrombomodulin complex. Deletion of the rest of EGF3 and the interdomain loop between EGF3 and EGF4 had no effect on Kd but decreased kcat/KM to 10% of TME. Deletion of residues 447-462 of EGF6 had no effect on kcat/KM but increased Kd for thrombin approximately 6-fold. Thus, the region 333-350 in EGF3-4 is critical for protein C activation by the thrombin-thrombomodulin complex and the region 447-462 in EGF6 is critical for thrombin binding.  相似文献   

14.
The substrate specificity of thrombin is regulated by binding of macromolecular substrates and effectors to exosites I and II. Exosites I and II have been reported to be extremely linked allosterically, such that binding of a ligand to one exosite results in near-total loss of affinity for ligands at the alternative exosite, whereas other studies support the independence of the interactions. An array of fluorescent thrombin derivatives and fluorescein-labeled hirudin(54-65) ([5F]Hir(54-65)(SO(3)(-))) were used as probes in quantitative equilibrium binding studies to resolve whether the affinities of the exosite I-specific ligands, Hir(54-65)(SO(3)(-)) and fibrinogen, and of the exosite II-specific ligands, prothrombin fragment 2 and a monoclonal antibody, were affected by alternate exosite occupation. Hir(54-65)(SO(3)(-)) and fibrinogen bound to exosite I with dissociation constants of 16-28 nm and 5-7 microm, respectively, which were changed < or =2-fold by fragment 2 binding. Native thrombin and four thrombin derivatives labeled with different probes bound fragment 2 and the antibody with dissociation constants of 3-12 microm and 1.8 nm, respectively, unaffected by Hir(54-65)(SO(3)(-)). The results support a ternary complex binding model in which exosites I and II can be occupied simultaneously. The thrombin catalytic site senses individual and simultaneous binding of exosite I and II ligands differently, resulting in unique active site environments for each thrombin complex. The results indicate significant, ligand-specific allosteric coupling between thrombin exosites I and II and catalytic site perturbations but insignificant inter-exosite thermodynamic linkage.  相似文献   

15.
A thrombin receptor has recently been cloned and the sequence deduced. The sequence reveals a thrombin cleavage site that accounts for receptor activation. The receptor also has an acidic region with some similarities to the carboxyl-terminal region of the leech thrombin inhibitor, hirudin. Synthetic peptides corresponding to the receptor cleavage site (residues 38-45), the hirudin-like domain (residues 52-69), and the covalently associated domains (residues 38-64) were evaluated for their ability to bind to thrombin. Peptides 38-45 and 38-64 were competitive inhibitors of thrombin's chromogenic substrate activity (Ki = 0.96 mM and 0.6 microM, respectively. Residues 52-69 altered the chromogenic substrate specificity, resulting in accelerated cleavage of some substrates and inhibited cleavage of others. The same peptide binds to thrombin and alters the fluorescence emission intensity of 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-thrombin in which the dansyl is attached directly to the active site serine (Kd = 32 +/- 7 microM). Residues 52-69 displace the carboxyl-terminal peptide of hirudin, indicating that they share a common binding site in the anion exosite of thrombin. These data suggest that the thrombin receptor has high affinity for thrombin due to the presence of the hirudin-like domain and that this domain alters the specificity of thrombin. This change in specificity may account for the ability of the receptor to serve as an excellent thrombin substrate despite the presence of an Asp residue in the P3 site, which is normally inhibitory to thrombin activity.  相似文献   

16.
Treuheit NA  Beach MA  Komives EA 《Biochemistry》2011,50(21):4590-4596
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.  相似文献   

17.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

18.
Epidermal growth factor (EGF)-like growth factors bind their ErbB receptors in a highly selective manner, but the molecular basis for this specificity is poorly understood. We have previously shown that certain residues in human EGF (Ser(2)-Asp(3)) and TGFalpha (Glu(26)) are not essential for their binding to ErbB1 but prevent binding to ErbB3 and ErbB4. In the present study, we have used a phage display approach to affinity-optimize the C-terminal linear region of EGF-like growth factors for binding to each ErbB receptor and thereby shown that Arg(45) in EGF impairs binding to both ErbB3 and ErbB4. By omitting all these so-called negative constraints from EGF, we designed a ligand designated panerbin that binds ErbB1, ErbB3, and ErbB4 with similarly high affinity as their wild-type ligands. Homology models, based on the known crystal structure of TGFalpha-bound ErbB1, showed that panerbin is able to bind ErbB1, ErbB3, and ErbB4 in a highly similar manner with respect to position and number of interaction sites. Upon in silico introduction of the experimentally known negative constraints into panerbin, we found that Arg(45) induced local charge repulsion and Glu(26) induced steric hindrance in a receptor-specific manner, whereas Ser(2)-Asp(3) impaired binding due to a disordered conformation. Furthermore, radiolabeled panerbin was used to quantify the level of all three receptors on human breast cancer cells in a single radioreceptor assay. It is concluded that the ErbB specificity of EGF-like growth factors primarily results from the presence of a limited number of residues that impair the unintended interaction with other ErbB receptors.  相似文献   

19.
M Struthers  H Yu  M Kono  D D Oprian 《Biochemistry》1999,38(20):6597-6603
We have used cysteine scanning mutagenesis and disulfide cross-linking in a split rhodopsin construct to investigate the secondary structure and tertiary contacts of the fifth (TM5) and sixth (TM6) transmembrane segments of rhodopsin. Using a simple increase in pH to promote disulfide bond formation, three cross-links between residues on the extracellular side of TM5 (at positions 198, 200, and 204) and TM6 (at position 276) have been identified and characterized. The helical pattern of cross-linking observed indicates that the fifth transmembrane helix extends through residue 200 but does not include residue 198. Rhodopsin mutants containing these disulfides demonstrate nativelike absorption spectra and light-dependent activation of transducin, suggesting that large movements on the extracellular side of TM5 with respect to TM6 are not required for receptor activation.  相似文献   

20.
The structure of the ternary complex of human alpha-thrombin with a covalently bound analogue of fibrinopeptide A and a C-terminal hirudin peptide has been determined by X-ray diffraction methods at 0.25 nm resolution. Fibrinopeptide A folds in a compact manner, bringing together hydrophobic residues that slot into the apolar binding site of human alpha-thrombin. Fibrinogen residue Phe8 occupies the aryl-binding site of thrombin, adjacent to fibrinogen residues Leu9 and Val15 in the S2 subsite. The species diversity of fibrinopeptide A is analysed with respect to its conformation and its interaction with thrombin. The non-covalently attached peptide fragment hirudin(54-65) exhibits an identical conformation to that observed in the hirudin-thrombin complex. The occupancy of the secondary fibrinogen-recognition exosite by this peptide imposes restrictions on the manner of fibrinogen binding. The surface topology of the thrombin molecule indicates positions P1'-P3', differ from those of the canonical serine-proteinase inhibitors, suggesting a mechanical model for the switching of thrombin activity from fibrinogen cleavage to protein-C activation on thrombomodulin complex formation. The multiple interactions between thrombin and fibrinogen provide an explanation for the narrow specificity of thrombin. Structural grounds can be put forward for certain congenital clotting disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号