首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTPδ, and PTPς, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTPς (PTPς-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTPδ (PTPδ-D2) as an interactor of PTPς-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTPς-D1 and PTPδ-D2, an association which required the presence of the wedge sequence in PTPς-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTPα. This interaction was not reciprocal, as PTPδ-D1 did not bind PTPς-D2. Addition of a glutathione S-transferase (GST)–PTPδ-D2 fusion protein (but not GST alone) to GST–PTPς-D1 led to ~50% inhibition of the catalytic activity of PTPς-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTPς-D1 activity was obtained with coimmunoprecipitated PTPδ-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTPς (PTPς-D2), very similar in sequence to PTPδ-D2, bound poorly to PTPς-D1. PTPδ-D1 and LAR-D1 were also able to bind PTPδ-D2, but more weakly than PTPς-D1, with a binding hierarchy of PTPς-D1>>PTPδ-D1>LAR-D1. These results suggest that association between PTPς-D1 and PTPδ-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.  相似文献   

2.
3.
PTPμ is expressed in the developing nervous system and promotes growth and guidance of chick retinal ganglion cells. Using a newly developed growth cone rearrangement assay, we examined whether the small G‐proteins were involved in PTPμ‐dependent signaling. The stimulation of retinal cultures with purified PTPμ resulted in a striking morphological change in the growth cone, which becomes dominated by filopodia within 5 min of addition. This rearrangement in response to PTPμ stimulation was mediated by homophilic binding. We perturbed GTPase signaling using Toxin B, which inhibits Cdc42, Rac, and Rho, as well as the toxin Exoenzyme C3 that inhibits Rho. The PTPμ‐induced growth cone rearrangement was blocked by Toxin B, but not by Exoenzyme C3. This result suggests that either Cdc42 or Rac are required but not Rho. To determine which GTPase was involved in PTPμ signaling, we utilized dominant‐negative mutants of Cdc42 and Rac. Dominant‐negative Cdc42 blocked PTPμ‐induced rearrangement, while wild‐type Cdc42 and dominant‐negative Rac did not. Together, these results suggest a molecular signaling cascade beginning with PTPμ homophilic binding at the plasma membrane and the activation of Cdc42, which acts on the actin cytoskeleton to result in rearrangement of the growth cone. © 2003 Wiley Periodicals, Inc. J Neurobiol 56:199–208, 2003  相似文献   

4.
gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the regulation of microtubule functions. A 1.8 kb cDNA coding for gamma-tubulin was isolated from CHO cells. Analysis of nucleotide sequence predicts a protein of 451 amino acids, which is over 97% identical to human and Xenopus gamma-tubulin. When CHO cells were transiently transfected with the gamma-tubulin clone, epitope-tagged full-length, as well as truncated polypeptides (amino acids 1-398 and 1-340), resulted in the formation of cytoplasmic foci of various sizes. Although one of the foci was identified as the centrosome, the rest of the dots were not associated with any other centrosomal components tested so far. The pattern of microtubule organization was not affected by induction of such gamma-tubulin-containing dots in transfected cells. In addition, the cytoplasmic foci were unable to serve as the site for microtubule regrowth in nocodazole-treated cells upon removal of the drug, suggesting that gamma-tubulin-containing foci were not involved in the activity for microtubule formation and organization. Using the monomeric form of Chlamydomonas gamma-tubulin purified from insect Sf9 cells (), interaction between gamma-tubulin and microtubules was further investigated by immunoelectron microscopy. Microtubules incubated with gamma-tubulin monomers in vitro were associated with more gold particles conjugated with gamma-tubulin than in controls where no exogenous gamma-tubulin was added. However, binding of gamma-tubulin to microtubules was not extensive and was easily lost during sample preparation. Although gamma-tubulin was detected at the minus end of microtubules several times more frequently than the plus end, the majority of gold particles were seen along the microtubule length. These results contradict the previous reports (; ), which might be ascribed to the difference in the level of protein expression in transfected cells.  相似文献   

5.
6.
Adrenocorticotropic hormone (ACTH) treatment has been proven to promote paxillin dephosphorylation and increase soluble protein tyrosine phosphatase (PTP) activity in rat adrenal zona fasciculata (ZF). Also, in‐gel PTP assays have shown the activation of a 115‐kDa PTP (PTP115) by ACTH. In this context, the current work presents evidence that PTP115 is PTP‐PEST, a PTP that recognizes paxillin as substrate. PTP115 was partially purified from rat adrenal ZF and PTP‐PEST was detected through Western blot in bioactive samples taken in each purification step. Immunohistochemical and RT‐PCR studies revealed PTP‐PEST expression in rat ZF and Y1 adrenocortical cells. Moreover, a PTP‐PEST siRNA decreased the expression of this phosphatase. PKA phosphorylation of purified PTP115 isolated from non‐ACTH‐treated rats increased KM and VM. Finally, in‐gel PTP assays of immunoprecipitated paxillin from control and ACTH‐treated rats suggested a hormone‐mediated increase in paxillin–PTP115 interaction, while PTP‐PEST and paxillin co‐localize in Y1 cells. Taken together, these data demonstrate PTP‐PEST expression in adrenal ZF and its regulation by ACTH/PKA and also suggest an ACTH‐induced PTP–PEST–paxillin interaction. J. Cell. Biochem. 117: 2170–2181, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

7.
We report herein that expression of α2β1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that α2β1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of α2β1 on KX2C2 and RDX2C2 cells using a α2β1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated α2β1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that α2β1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that α2β1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.  相似文献   

8.
Russian Journal of Bioorganic Chemistry - Delivery of siRNAs to blood cells is one of the most difficult tasks since there are no efficient and nontoxic methods of delivering nucleic acids to these...  相似文献   

9.
Circulating endotoxin was specifically precipitated from plasma samples withdrawn from three different animal species subsequent to parenteral injection of the toxin. Lipoprotein-positive staining and esterase activity were demonstrated on the precipitation lines formed in immunodiffusion, thus establishing the in vivo interaction of endotoxin with a plasma lipoprotein having esterase activity. Evidence was given to show that the intensity of this interaction in circulating plasma increased gradually with time. The concordance of this in vivo inter-action with the in vitro degradation and inactivation of endotoxin by plasma esterases is discussed.  相似文献   

10.
The phencyclidine (PCP) derivative, [3H]N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine ([3H]BTCP), was used to label in vivo the dopamine uptake complex in mouse brain. The striatum accumulated the highest level of total and specific binding. Drugs which bind to the dopamine uptake site inhibited [3H]BTCP binding on an order similar to their in vitro affinities for the high-affinity [3H]BTCP site. Drugs which label selectively other monoamine uptake complexes. PCP, or sigma recognition sites were ineffective at doses up to 40 mg/kg. PCP bound to and dissociated from the dopamine uptake complex very rapidly. N-[1-(2-Thienyl)cyclohexyl]pideridine (TCP) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) had no effect at any time or at any dose. These results imply that the pharmacological effects of PCP are due to its simultaneous interaction with the dopamine uptake complex and the PCP receptor. Conversely, TCP and MK-801, which have the same behavioral properties as PCP, exert their action only through the interaction with the PCP receptor.  相似文献   

11.
12.
In vivo α-complementation of β-galactosidase was demonstrated in 16 Z gene terminator (nonsense) mutant strains of Escherichia coli upon introduction of the episome F′M15 which specifies production of a mutant Z gene polypeptide containing a small deletion in the N-terminal region of the enzyme monomer. Genetic and biochemical analyses of the merodiploids showed that restoration of enzyme activity was due to their terminator/F′M15 genetic constitution resulting in the production of two enzymatically inactive polypeptides which associate in vivo to reconstitute active, stable β-galactosidase. The prematurely terminated polypeptide fragments known to be rapidly degraded in haploid cells were shown by phenotypic and biochemical studies to be stabilized (i.e., protected) in merodiploids by formation of complemented enzyme complexes with the M15 protein. Phenotypic properties of complementing diploids are described and are discussed in relation to in vitro determination of β-galactosidase activity.  相似文献   

13.
14.
A comparison of the specific activity of wild-type beta-galactosidase synthesized in a lacZ(-)/lacZ(+) heterogenote has shown that there is 60% more activity in the heterogenote's enzyme than can be accounted for by wild-type subunits alone. It is concluded that wild type beta-galactosidase subunits can complement mutant subunits.  相似文献   

15.
断裂内含肽含有两个独立分离的多肽片段(N端内含肽和C端内含肽),它催化蛋白质反式剪接反应,在蛋白质研究与蛋白质工程中已得到诸多实际应用.在蛋白质反式剪接过程中,内含肽的N端内含肽和C端内含肽通过结构互补特异性地非共价组合.然而,Ssp DnaX S1型断裂内含肽的较大C端内含肽片段近来被发现能够与源自其它内含肽的N端内含肽片段交叉反应,表明蛋白质内含子Ssp DnaX具有结构杂交特征.本研究对另外2种S1型内含肽Rma DnaB和Ssp GyrB的较大C端内含肽与不同S1型断裂内含肽的N 端内含肽交叉反应活性进行分析检测.目的是探讨S1型断裂内含肽的结构杂交特征是否具有普遍性.结果发现,Rma DnaB的S1 C端内含肽能够与Ssp GyrB的S1 N端内含肽交叉反应,却不能与Ssp DnaX的S1 N端内含肽交叉反应;与此相似,Ssp GyrB的S1 C端内含肽能够与Rma DnaB的 S1 N端内含肽交叉反应,却不能与Ssp DnaX的S1 N端内含肽交叉反应.此外,某些交叉反应表现出温度依赖性.这些结果对于内含肽的结构 功能关系以及S1型断裂内含肽的应用研究具有重要的意义.  相似文献   

16.
In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.The Tec family of tyrosine kinases plays a critical role in lymphocyte development and activation through antigen receptors (4, 40). The inducible T-cell kinase (ITK), a member of the Tec family, regulates selection during thymocyte development and controls the generation of effective Th2 responses (15, 40). Phosphorylation of ITK on Tyr 511 by the Src family kinase LCK occurs early upon the engagement of the T-cell antigen receptor (TCR) and is critical for the enzymatic activation of ITK (18, 44). Upon its activation, ITK phosphorylates phospholipase C-γ1 (PLC-γ1) on tyrosines 775 and 783, an event critical for phospholipase activity (3, 5) and ensuing intracellular and capacitative Ca2+ mobilization (26). In this fashion, ITK regulates downstream signaling events that regulate biological responses, such as cytokine production (4, 40).ITK is organized in modular domains that play critical roles in its activation (47). Upon T-cell engagement, ITK colocalizes with the TCR, a process dependent on the pleckstrin homology (PH) domain of ITK and its interaction with PIP3 at the plasma membrane (11, 19). Activation of ITK also requires interaction with adaptor proteins, such as SLP-76 and LAT (8, 10). The SH2 domain of ITK appears to be critical for its interaction with LAT, whereas both the SH2 and SH3 domains are required for interaction with SLP-76 (8, 10). In vitro studies have demonstrated that the SH3 domain of ITK interacts with the proline-rich (PR) region of SLP-76, and it has been speculated that this interaction is critical for the activation of ITK (6, 8). However, the biological significance of the interaction has not been demonstrated in live cells. In the present investigation, we used a cell-permeable peptide as a competitive inhibitor of the interaction between ITK and SLP-76. To this end, we synthesized a 12-amino-acid peptide, which represents the PR region of SLP-76 that binds to the ITK-SH3 domain, and rendered it cell permeable by the addition of nine arginines at its N-proximal end. Here, we show that this cell-permeable peptide, henceforth called R9-QQP, is readily taken up by both Jurkat T cells and murine splenocytes and disrupts events that are mediated by the engagement of the TCR. Thus, association of ITK and SLP-76, recruitment of ITK and actin polarization at the T-cell contact site, LCK-mediated transphosphorylation of ITK on tyrosine 511, and production of Th2 cytokines are inhibited by R9-QQP in a dose-dependent and peptide-specific manner. The data presented here are novel and significant because they provide the first demonstration of the biological relevance of the specific interaction between the ITK-SH3 domain and the SLP-76 PR region in live cells. Furthermore, the data underscore the potential of cell-permeable peptides as useful probes for dissecting signal transduction pathways in live cells, and in view of the regulatory role that ITK plays in Th2 cytokine production, they have implications for the pharmacological manipulation of ITK in disease situations.  相似文献   

17.
A chlorophyll type pigment (F698) fluorescing maximally at 698 mμ at 77°K has been observed in preparations of chlorophyll. This fluorescence is quenched by small amounts of naturally occurring materials, including plastoquinone and the ubiquinones, and by nitrobenzene, probably by formation of a nonfluorescent complex. Fluorescence quenching does not occur in the presence of carotenes, xanthophylls, or reduced plastoquinone and ubiquinone. The fluorescence is sharply temperature dependent, with a steep rise in intensity occurring at 165°K. At 77°K the fluorescence yield is between 0.8 and 1.0. The red absorption maximum of the pigment is at 675 mμ at room temperature and at 688 mμ at 77°K. In vivo, a low temperature emission is also observed at 698 mμ, and this fluorescence is quenched by nitrobenzene. It is proposed that the pigment found in vitro is also the one responsible for emission at 698 mμ in vivo. A reaction of F698 with plastoquinone is suggested as the primary photochemical step in system II of photosynthesis.  相似文献   

18.
The cadherins are a family of homophilic adhesion molecules that play a vital role in the formation of cellular junctions and in tissue morphogenesis. Members of the integrin family are also involved in cell to cell adhesion, but bind heterophilically to immunoglobulin superfamily molecules such as intracellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, or mucosal addressin cell adhesion molecule (MadCAM)–1. Recently, an interaction between epithelial (E-) cadherin and the mucosal lymphocyte integrin, αEβ7, has been proposed. Here, we demonstrate that a human E-cadherin–Fc fusion protein binds directly to soluble recombinant αEβ7, and to αEβ7 solubilized from intraepithelial T lymphocytes. Furthermore, intraepithelial lymphocytes or transfected JY′ cells expressing the αEβ7 integrin adhere strongly to purified E-cadherin–Fc coated on plastic, and the adhesion can be inhibited by antibodies to αEβ7 or E-cadherin.

The binding of αEβ7 integrin to cadherins is selective since cell adhesion to P-cadherin–Fc through αEβ7 requires >100-fold more fusion protein than to E-cadherin–Fc. Although the structure of the αE-chain is unique among integrins, the avidity of αEβ7 for E-cadherin can be regulated by divalent cations or phorbol myristate acetate. Cross-linking of the T cell receptor complex on intraepithelial lymphocytes increases the avidity of αEβ7 for E-cadherin, and may provide a mechanism for the adherence and activation of lymphocytes within the epithelium in the presence of specific foreign antigen. Thus, despite its dissimilarity to known integrin ligands, the specific molecular interaction demonstrated here indicates that E-cadherin is a direct counter receptor for the αEβ7 integrin.

  相似文献   

19.

Background

Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized.

Methodology

The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer''s patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured.

Conclusions

We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer''s patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer''s patch.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号