首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutagenic and error-free DNA repair in Streptomyces   总被引:2,自引:0,他引:2  
Summary Two mutants of Streptomyces fradiae defective in DNA repair have been characterized for their responses to the mutagenic and lethal effects of several chemical mutagens and ultraviolet (UV) light. S. fradiae JS2 (mcr-2) was more sensitive than wild type to agents which produce bulky lesions resulting in large distortions of the double helix [i.e. UV-light, 4-nitroquinoline-1-oxide (NQO), and mitomycin C (MC)] but not to agents which produce small lesions [i.e. hydroxylamine (HA), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG)]. JS2 expressed a much higher frequency of mutagenesis induced by UV-light at low doses and thus appeared to be defective in an error-free excision repair pathway for bulky lesions analogous to the uvr ABC pathway of Escherichia coli. S. fradiae JS4 (mcr-4) was defective in repair of damage by most agents which produce small or bulky lesions (i.e., HA, NQO, MMS, MNNG, MC, and UV, but not EMS). JS4 was slightly hypermutable by EMS and MMS but showed reduced mutagenesis by NQO and HA. This unusual phenotype suggests that the mcr-4 + protein plays some role in error-prone repair in S. fradiae.  相似文献   

2.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

3.
M. A. Typas  I. Galani 《Genetica》1992,87(1):37-45
Mutagenesis of the facultative anaerobe Zymomonas mobilis was accomplished by three different mutagens. Ultra-violet (UV) irradiation, whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, was a poor mutagen for this organism. Ethyl methane sulphonate (EMS) gave results very similar to UV-irradiation. N-methyl-N-nitro-N-nitrosoguanidine (MNNG), which is believed to act by multiple mutagenic mechanisms, was the most powerful mutagen, always resulting in a large number of mutants of all types examined (i.e. auxotrophs, antibiotic resistant, heavy metal resistant and ultraviolet sensitive). Reversion frequencies of MNNG-induced mutants were very low. Evidence is provided that mutagenesis of Z. mobilis is affected by photoreactivation, adaptive response and error-prone repair mechanisms. Moreover, cells treated with alkylating agents and allowed to recover under anaerobic conditions clearly demonstrated that anaerobiosis plays a significant role in repair, but not in the induction of mutants.  相似文献   

4.
Summary This paper describes studies to determine the role of the umuC gene product in the process of alkylation induced mutagenesis. An active umuC gene is necessary for most MMS induced mutagenesis but it is not essential for EMS nor for MNNG induced mutagenesis in either normal or adapted cultures. In this respect the umuC mutation differs from lexA mutations which have a striking effect on MNNG induced mutagenesis (Schendel, et al., 1978). These findings have prompted a re-evaluation of these previously published data and the advancement of an hypothesis which explains the lexA effect without evoking a role for error-prone repair in the process of alkylation induced mutagenesis.It was also observed that exposure to MNNG is capable of generating a small amount of W-reactivation and W-mutagenesis capacity in a umuC strain which is totally blocked for UV induced reactivation. In light of this result a possible function for the umuC gene product is discussed.  相似文献   

5.
Summary The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultraviolet irradiation, and reactivation of ultraviolet-irradiated in unirradiated cells. All these effects are shown to be dependent on the recA + lexA+ genotype but not on the recB + recC+ or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42°. The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components.  相似文献   

6.
H Mitani 《Mutation research》1983,107(2):279-288
GEM 199 cells derived from an erythrophoroma of goldfish (Carassius auratus), which had a high plating efficiency, were used to investigate the lethal and mutational effects of radiations (UV and gamma-rays) and chemicals (4NQO and MNNG). The cells were more resistant to gamma-rays than mammalian cells and CAF-MM1 cells derived from the normal fin tissue of goldfish. They were also more resistant to UV-irradiation than CAF-MM1 cells. Photoreactivation after UV-irradiation was present in GEM 199 cells for both survival and mutation. The initial shoulder of the survival curve of UV-irradiated cells was reduced greatly by caffeine, suggesting a high activity of the post-replication repair. The spontaneous mutation frequency to ouabain resistance was 1-5 X 10(-6) clones per viable cell. MNNG was effective in inducing ouabain-resistant mutation, while 4NQO and gamma-rays did not induce mutation.  相似文献   

7.
Summary DNA base sequence changes induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis have been determined for the Escherichia coli gpt gene stably incorporated in a chromosome of Chinese hamster ovary cells and in the chromosome of both growing and starving E. coli cells, instead of on a plasmid as in most previous studies. In the three cases, nearly all mutations were G: C to A: T transitions, with a 2-to 4-fold higher mutation rate, compared to other sites, at guanines flanked on the 5 side by another guanine. Mutagenic hot spots in these experiments were less prominent than in published results for MNNG mutagenesis of gpt and of other genes. A suggested explanation involves repair of O6meG. At low levels of mutagenic products, most are repaired and even small differences in the repair rates leads to large differences in the relative amounts of residual O6meG at various sites; in contrast, at high levels of mutagenic products there is little effect of repair on the distribution.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - O6meG O6-methylguanine - N7meG N7-methylguanine - CHO Chinese hamster ovary  相似文献   

8.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

9.
Inducible DNA-repair systems in yeast: competition for lesions   总被引:1,自引:0,他引:1  
DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate that in this lower eukaryote, mutagen exposure does not necessarily result in a fixed risk of mutation, but that the risk can be markedly influenced by a variety of external stimuli including heat shock or exposure to other mutagens.  相似文献   

10.
Misrepair Mutagenesis in Bacteriophage T4   总被引:10,自引:1,他引:9       下载免费PDF全文
The T4 mutations px, y and 1206 inactivate an error-prone recombination-like repair system, reducing or abolishing mutagenesis by UV irradiation, MMS, and white light irradiation in the presence of the photosensitizer 8MOP. Both px and y increase some spontaneous mutation rates and slightly enhance proflavin mutagenesis; neither mutation affects thymineless or 2AP mutagenesis appreciably, but both mildly enhance 5BU mutagenesis. The mutation hm promotes UV, MMS, photodynamic, thymineless, and base analog mutagenesis, in addition to spontaneous base pair substitution mutation. It does not, however, markedly affect proflavin mutagenesis. The px mutation maps in the vicinity of genes 41-56, and the hm mutation maps in the vicinity of genes rI-v.  相似文献   

11.
Antimutagenic activity of Lactobacillus plantarum KLAB21, isolated from Korean kimchi, was investigated against MNNG (N-methyl-N-nitro-N-nitrosoguanidine), NQO (4-nitroquinoline-1-oxide), NPD (4-nitro-O-phenylenediamine) and aflatoxin B1 using Salmonella typhimurium strains TA100 and TA98. Although all the cell fractions including the culture supernatant, dry cells and cell-free extract exhibited antimutagenic activity against MNNG and NQO, the culture supernatant possessed the highest activity. The antimutagenic ratio of the culture supernatant was 98.4% against MNNG on strain TA100 and 57.3% against NQO on strain TA98. Its antimutagenic activity was reconfirmed by a Bacillus subtilis spore-rec assay. Levels of the antimutagenic ratios of other lactic acid bacteria originating from fermented milk ranged between 26.8 to 53% against MNNG and 28.5 to 43.4% against NQO. The antimutagenic activities of the strain KLAB21 against NPD were 72.6% on TA100 and 62.8% on TA98, and those against aflatoxin B1 were 82.5% on TA100 and 78.2% on TA98.  相似文献   

12.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methane-sulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT TA than GC TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis. We propose that the type of misincorporation/chain extension which DNA polymerase III is allowed to synthesize on a damaged DNA template is extremely sensitive to both the amount and type of error-prone repair proteins present. The modulation of these events by the different proteins can result in widely different mutagenic changes in the repaired DNA.  相似文献   

13.
Summary The presence of colicinogenic plasmids ColIb-P9 and ColIa-CA53 in E. coli K-12 cells, wild-type with respect to repair, enhanced the survival of cells after UV irradiation and increased the frequency of UV-induced argE3 and his-4 reversions, while the presence of ColV-K30 negatively affected repair and mutagenesis. The plasmid ColIb-P9 showed a UV-protective effect in E. coli cells carrying mutations in genes uvrA, uvrB, uvrC, polA, recB, recF, though in none of the mutants did cell survival reach the wild-type level. The effect of ColIb-P9 on mutagenesis did not depend on the uvrA or recB genes. The plasmids' protective effect and the enhancement of mutagenesis depended on the recA + lexA+ genotype. The frequency of 2-aminopurine-induced mutations was not affected by ColIb-P9 or ColV-K30. The presence of ColIb-P9 decreased the ability of ColEl-carrying cells to induce colicin E1 synthesis caused by DNA-damaging agents: UV, MNNG, mitomycin C, whereas ColV-K30 increased the percentage of colicin E1-producing cells. These plasmid effects on the level of induction of colicin E1 synthesis were not observed in the case of induction caused by chloramphenicol which did not depend on the products of recA and lexA genes.Abbreviations AP 2-aminopurine - MNNG N-methyl-N-nitro-N-nitrosoguanidine - ICS induction of colicin synthesis - CM chlorampheniol - MC mitomycin C  相似文献   

14.
The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS). Regarding mutagenesis, the pso4-1 mutation completely blocks reverse and forward mutations induced by either 8MOP or 3CPs photoaddition, or by gamma-rays. In the cases of UV, HN1, HN2 or MMS treatments, while reversion induction is still completely abolished, forward mutagenesis is only partially inhibited for UV, HN1, or MMS, and it is unaffected for HN2. Besides severely inhibiting induced mutagenesis, the pso4-1 mutation was found to be semi-dominant, to block sporulation, to abolish the diploid resistance effect, and to block induced mitotic recombination, which indicates that the PSO4 gene is involved in a recombinational pathway of error-prone repair, comparable to the E. coli SOS repair pathway.  相似文献   

15.
    
Summary In the ultraviolet (UV)-mutable bacterium, Myxococcus xanthus, dose response curves for the induction of rifampicin-resistant (Rifr) mutants were compared with dose response curves for Weigle(W)-reactivation of the UV-irradiated phage Mx4 at a phage survival of 5x10–6. In most strains examined, including a uvr mutant, these curves are largely similar. Unexpectedly the UV-sensitive strain M. xanthus Bt, which is unable to perform W-reactivation, is nevertheless UV-mutable. This result may indicate that the repair pathway involved in phage reactivation is only partly responsible for UV-mutagenesis or alternatively is not able to act on phage DNA in M. xanthus Bt cells. N-methyl-N-nitro-N-nitrosoguanidine (MNNG) treatment of M. xanthus cells also results in marked W-reactivation of the UV-irradiated phage Mx4 at the same survival of 5x10–6. The MNNG-stimulated phage reactivation is of the same order of magnitude as the UV-stimulated phage reactivation. Also the dose response curves for the induction of Rifr mutants by MNNG and the MNNG-stimulated phage reactivation are quite similar. This coincidence may indicate that misrepair mutagenesis is involved in both UV and MNNG-mutagenesis. It is suggested that M. xanthus is a useful organism with which to study misrepair mutagenesis in bacteria.  相似文献   

16.
Cultivation of E. coli B/r strain WP2 in low concentrations of either 4-nitroquinoline N-oxide (4NQO) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) had no effect on the mutagenic or cytotoxic consequences of subsequent challenge with dichlorvos (DCV). However, although the sensitivity of E. coli cells taken from cultures grown in low concentrations of DCV to the effects of 4NQO was unchanged, the cells were more resistant to the mutagenic (but not cytotoxic) consequences of MNNG challenge. This phenomenon was not observed in WP2 derivatives deficient in either error-free (uvrA-) or error-prone (lexA-) DNA-repair, suggesting that a factor common to both these repair pathways may be involved.  相似文献   

17.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

18.
Summary Host cell reactivation and UV reactivation and mutagenesis of UV-irradiated phage were measured in tsl recA + and tsl recA host mutants. Host cell reactivation was slightly more efficient in the tsl recA strain compared to the tsl + recA strain. Phage was UV-reactivated in the tsl recA strain with about one-half the efficiency of that in the wild type strain, but there was no corresponding mutagenesis of phage. UV-reactivation was also slightly lower and mutagenesis several-fold lower than normal in the tsl recA + strain. To account for these observations, we propose that there is an inducible, error-free pathway of DNA repair in E. coli that competes with error-prone repair for repair of phage lesions.  相似文献   

19.
M.E. Lobashev has brilliantly postulated in 1947 that error-prone repair contribute to mutations in cells. This was shown to be true once the mechanisms of UV mutagenesis in Escherichia coli were deciphered. Induced mutations are generated during error-prone SOS DNA repair with the involvement of inaccurate DNA polymerases belonging to the Y family. Currently, several distinct mutator enzymes participating in spontaneous and induced mutagenesis have been identified. Upon induction of these proteins, mutation rates increase by several orders of magnitude. These proteins regulate the mutation rates in evolution and in ontogeny during immune response. In jawed vertebrates, somatic hypermutagenesis occurs in the variable regions of immunoglobulin genes, leading to affinity maturation of antibodies. The process is initiated by cytidine deamination in DNA to uracil by AID (Activation-Induced Deaminase). Further repair of uracil-containing DNA through proteins that include the Y family DNA polymerases causes mutations, induce gene conversion, and class switch recombination. In jawless vertebrates, the variable lymphocyte receptors (VLR) serve as the primary molecules for adaptive immunity. Generation of mature VLRs most likely depends on agnathan AID-like deaminases. AID and its orthologs in lamprey (PmCDA1 and PMCDA2) belong to the AID/APOBEC family of RNA/DNA editing cytidine deaminases. This family includes enzymes with different functions: APOBEC1 edits RNA, APOBEC3 restricts retroviruses. The functions of APOBEC2 and APOBEC4 have not been yet determined. Here, we report a new member of the AID/APOBEC family, APOBEC5, in the bacterium Xanthomonas oryzae. The widespread presence of RNA/DNA editing deaminases suggests that they are an ancient means of generating genetic diversity.  相似文献   

20.
Summary Mutations affecting single-strand DNA binding protein (SSB) impair induction of mutagenic (SOS) repair. To further investigate the role of SSB in SOS induction and DNA repair, isogenic strains were constructed combining the ssb +, ssb-1 or ssb-113 alleles with one or more mutations known to alter regulation of damage inducible functions. As is true in ssb + strains tif-1 (recA441) was found to allow thermal induction of prophage + and Weigle reactivation in ssb-1 and ssb-113 strains. Furthermore, tif-1 decreased the UV sensitivity of the ssb-113 strain slightly and permitted UV induction of prophage + at 30°C. Strains carrying the recAo281 allele were also constructed. This mutation causes high constitutive levels of RecA protein synthesis and relieves much of the UV sensitivity conferred by lexA alleles without restoring SOS (error-prone) repair. In contrast, the recAo281 allele failed to alleviate the UV sensitivity associated with either ssb mutation. In a lexA1 recAo281 background the ssb-1 mutation increased the extent of postirradiation DNA degradation and concommitantly increased UV sensitivity 20-fold to the level exhibited by a recA1 strain. The ssb-113 mutation also increased UV sensitivity markedly in this background but did so without greatly increasing postirradiation DNA degradation. These results suggest a direct role for SSB in recombinational repair apart from and in addition to its role in facilitating induction of the recA-lexA regulon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号