首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy‐demanding growth‐related processes. Studies using genome‐wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.  相似文献   

5.
Copper tolerance in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
A commercial strain of Saccharomyces cerevisiae was serially cultured in media containing copper up to a final concentration of 10 mmol l-1. This copper-tolerant subculture was assessed for its capacity to accumulate further quantities of copper. It was found that after Cu2+ accumulation the total copper content of this yeast was lower than the parent culture when exposed to similar conditions, indicating that the subculture was copper-resistant owing to reduced copper bioaccumulation properties. Although a low mass copper binding compound was isolated from the copper-tolerant subculture, no metallothionein was found. Scanning electron microscopy of S. cerevisiae showed the cell surface to be smooth except for bud scars. After exposure to copper ion-containing solutions the surface of copper-tolerant yeast became convoluted, the cell was generally more spherical and somewhat smaller.  相似文献   

6.
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

7.
ABSTRACT

Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

8.
Yeasts used in bread making are exposed to high concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stress is poorly understood at the gene level. To clarify the genes required for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 273 deletions that yielded high sucrose sensitivity, approximately 20 of which were previously uncharacterized. These 273 deleted genes were classified based on their cellular function and localization of their gene products. Cross-sensitivity of the high-sucrose-sensitive mutants to high concentrations of NaCl and sorbitol was studied. Among the 273 sucrose-sensitive deletion mutants, 269 showed cross-sensitivities to sorbitol or NaCl, and four (i.e. ade5,7, ade6, ade8, and pde2) were specifically sensitive to high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element pathways and the function of the invertase in the ade mutants were similar to those in the wild-type strain. In the presence of high-sucrose stress, intracellular contents of ATP in ade mutants were at least twofold lower than that of the wild-type cells, suggesting that depletion of ATP is a factor in sensitivity to high-sucrose stress. The genes identified in this study might be important for tolerance to high-sucrose stress, and therefore should be target genes in future research into molecular modification for breeding of yeast tolerant to high-sucrose stress.  相似文献   

9.
10.
11.
Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae. Typically, a query mutation is introduced en masse into a population of approximately 6000 haploid-convertible heterozygote diploid Yeast Knockout (YKO) mutants via integrative transformation. Haploid pools of single and double mutants are freshly generated from the resultant heterozygote diploid double mutant pool after meiosis and haploid selection and studied for potential growth defects of each double mutant combination by microarray analysis of the "molecular barcodes" representing each YKO. This technology has been effectively adapted to study other types of genome-wide genetic interactions including gene-compound synthetic lethality, secondary mutation suppression, dosage-dependent synthetic lethality and suppression.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly.  相似文献   

19.
Exploring the mechanisms of tolerance in microorganisms to vanillin, which is derived from lignin, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. Our objective was to identify the genes related to vanillin tolerance in Saccharomyces cerevisiae. We investigated the effects on vanillin tolerance of several genes that have site mutations in the highly vanillin-tolerant strain EMV-8 compared to its parental line NAN-27. The results showed that overexpression of GCY1, a gene that encodes an aldo-keto reductase that also has mRNA-binding activity, YPR1, a paralog of GCY1 that encodes an aldo-keto reductase, PEX5, a gene that encodes a peroxisomal membrane signal receptor and MBF1, a gene that encodes a multiprotein bridging factor increase the specific growth rates (μ) by 49%, 41%, 44% and 48 %, respectively, in medium containing 6 mmol l−1 vanillin. Among these gene products, Gcy1p and Ypr1p showed NADPH-dependent and NAD(P)H-dependent vanillin reductase activity, respectively. The reductase-inactive mutant Gcy1pY56F also increased vanillin tolerance in S. cerevisiae, suggesting that other mechanisms exist. Although TRS85 and PEX5, genes for which the mRNAs are binding targets of Gcy1p, were shown to be related to vanillin tolerance, both the mRNA and protein levels of these genes were not changed by overexpression of GCY1. The relationship between the mRNA-binding activity of Gcy1p and its positive effect on vanillin tolerance is still not clear. Finally, we found that the point mutation D112A in Mbf1p, which disrupts the binding of Mbf1p and the TATA element-binding protein (TBP), did not decrease the positive effect of Mbf1p on vanillin tolerance. This indicates that the binding of Mbf1p and TBP is not necessary for the positive effect on vanillin tolerance mediated by Mbf1p. We have successfully identified new genes related to vanillin tolerance and provided novel targets that can be used to improve the vanillin tolerance of S. cerevisiae. Moreover, we have extended our understanding of the proteins encoded by these genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号