首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthomonas translucens pv. graminis (Xtg) is a gammaproteobacterium that causes bacterial wilt on a wide range of forage grasses. To gain insight into the host–pathogen interaction and to identify the virulence factors of Xtg, we compared a draft genome sequence of one isolate (Xtg29) with other Xanthomonas spp. with sequenced genomes. The type III secretion system (T3SS) encoding a protein transport system for type III effector (T3E) proteins represents one of the most important virulence factors of Xanthomonas spp. In contrast with other Xanthomonas spp. assigned to clade 1 on the basis of phylogenetic analyses, we identified an hrp (hypersensitive response and pathogenicity) gene cluster encoding T3SS components and a representative set of 35 genes encoding putative T3Es in the genome of Xtg29. The T3SS was shown to be divergent from the hrp gene clusters of other sequenced Xanthomonas spp. Xtg mutants deficient in T3SS regulating and structural genes were constructed to clarify the role of the T3SS in forage grass colonization. Italian ryegrass infection with these mutants led to significantly reduced symptoms (P < 0.05) relative to plants infected with the wild‐type strain. This showed that the T3SS is required for symptom evocation. In planta multiplication of the T3SS mutants was not impaired significantly relative to the wild‐type, indicating that the T3SS is not required for survival until 14 days post‐infection. This study represents the first major step to understanding the bacterial colonization strategies deployed by Xtg and may assist in the identification of resistance (R) genes in forage grasses.  相似文献   

2.
The Pseudomonas aeruginosa type III secretion system (TTSS), enabling direct injection of toxins into host cells, has been shown to be crucial to virulence in several models of P. aeruginosa pathogenesis. Using the strain PA14 and its isogenic mutant, PA14exsA, we investigated the role of the TTSS during infection of the nematode Caenorhabditis elegans. Although C. elegans N2 was killed by PA14 in an infection like process over 48 to 72 h the same effect was observed following infection with PA14exsA, implying that a functional TTSS was not essential for virulence. This was despite the TTSS being actively expressed during C. elegans infection as demonstrated by the use of green fluorescent reporter constructs and RT-PCR. However, compared to the wild type PA14, PA14exsA did display a reduced rate of killing of C. elegans strain AU1 which harbours a mutation in the sek-1 gene encoding a MAP kinase involved in nematode innate immunity. A fuller understanding of the mechanism of resistance to type III attack in C. elegans may lead to the identification and development of novel therapeutic targets affording protection to TTSS products in man.  相似文献   

3.
The Gram‐negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N‐ and C‐terminal coiled‐coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N‐ and C‐terminal coiled‐coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.  相似文献   

4.
Pathogenic Yersinia species employ a type III secretion system (TTSS) to target antihost factors, Yop proteins, into eukaryotic cells. The secretion machinery is constituted of ca. 20 Ysc proteins, nine of which show significant homology to components of the flagellar TTSS. A key event in flagellar assembly is the switch from secreting-assembling hook substrates to filament substrates, a switch regulated by FlhB and FliK. The focus of this study is the FlhB homologue YscU, a bacterial inner membrane protein with a large cytoplasmic C-terminal domain. Our results demonstrate that low levels of YscU were required for functional Yop secretion, whereas higher levels of YscU lowered both Yop secretion and expression. Like FlhB, YscU was cleaved into a 30-kDa N-terminal and a 10-kDa C-terminal part. Expression of the latter in a wild-type strain resulted in elevated Yop secretion. The site of cleavage was at a proline residue, within the strictly conserved amino acid sequence NPTH. A YscU protein with an in-frame deletion of NPTH was cleaved at a different position and was nonfunctional with respect to Yop secretion. Variants of YscU with single substitutions in the conserved NPTH sequence--i.e., N263A, P264A, or T265A--were not cleaved but retained function in Yop secretion. Elevated expression of these YscU variants did, however, result in severe growth inhibition. From this we conclude that YscU cleavage is not a prerequisite for Yop secretion but is rather required to maintain a nontoxic fold.  相似文献   

5.
Bacterial type III secretion systems have significant potential to be harnessed for beneficial purposes including vaccine development, anti-cancer therapies, strategies to counteract harmful bacteria-host interactions, and evolutionary studies. The ability to clone and manipulate type III secretion systems would allow researchers to perform novel experiments that would progress the biotechnological development of the potentially positive uses of these systems. Here, we report the cloning of the entire Salmonella pathogenicity island 1 (SPI-1) type III secretion system on a single DNA fragment that is contained on a self-transmissible plasmid vector for convenient transfer to alternate hosts. We demonstrate that the cloned SPI-1 type III system is functional for secretion and translocation via complementation of an S. typhimurium Delta SPI-1 strain. We also present a convenient method to construct mutations and epitope fusions in the cloned type III genes and demonstrate that the engineered substrate protein fusions are recognized by the cloned type III system. We transferred the cloned SPI-1 type III system into bacterial strains of different genera and found that there is a SPI-1 gene expression defect in these strains. The results describe a novel strategy for cloning and manipulation of bacterial secretion system gene clusters and provide a foundation for future studies to develop the beneficial uses of cloned type III secretion systems.  相似文献   

6.
Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V.?parahaemolyticus infection.  相似文献   

7.
Fluorescent amplified fragment length polymorphism revealed that strains of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans are genetically distinct and can be grouped into four genetic lineages. Four suppression subtractive hybridizations were then performed to isolate DNA fragments present in these bean pathogens and absent from closely related xanthomonads. Virulence gene candidates were identified such as homologs of hemagglutinins, TonB-dependent receptors, zinc-dependent metalloproteases, type III effectors, and type IV secretion system components. Unexpectedly, homologs of the type III secretion apparatus components (SPI-1 family), usually reported in animal pathogens and insect symbionts, were also detected.  相似文献   

8.
Hemolysin and the type II secretion system (T2SS) have been shown to be important for virulence in many pathogens, but very few studies have shown their importance in beneficial microbes. Here, we investigated the importance of the type II secretion pathway in the beneficial digestive-tract association of Aeromonas veronii and the medicinal leech Hirudo verbana and revealed a critical role for the hemolysis of erythrocytes. A mutant with a miniTn5 insertion in exeM, which is involved in forming the inner membrane platform in the T2SS, was isolated by screening mutants for loss of hemolysis on blood agar plates. A hemolysis assay was used to quantify the mutant's deficiency in lysing sheep erythrocytes and revealed a 99.9% decrease compared to the parent strain. The importance of the T2SS in the colonization of the symbiotic host was assessed. Colonization assays revealed that the T2SS is critical for initial colonization of the leech gut. The defect was tied to the loss of hemolysin production by performing a colonization assay with blood containing lysed erythrocytes. This restored the colonization defect in the mutant. Complementation of the mutant using the promoter region and exeMN revealed that the T2SS is responsible for secreting hemolysin into the extracellular space and that both the T2SS and hemolysin export by the T2SS are critical for initial establishment of A. veronii in the leech gut.  相似文献   

9.
The length of the needle of the Yersinia Ysc injectisome is determined by a protein called YscP. This protein, which acts both as a molecular ruler and as a substrate-specificity switch for type III secretion is itself secreted by the injectisome. In this report, we address the question why YscP is secreted. By a systematic deletion analysis and by fusing different parts of the molecule to the adenylate cyclase reporter, we identified two independent secretion signals. One of them is encompassed within the 35 N-terminal residues while the second one spans residues 97-137. These two signals are functionally different from Yop secretion signals. When both secretion signals were removed, Yops could still be secreted but the needle length control was lost. YscP possessing only one signal did not control needle length properly but the control was improved when more YscP was produced and secreted. YscP deprived of both signals could not control length, even when overproduced. We conclude from this that YscP needs to be secreted to exert its length control function but not its substrate-specificity switch function.  相似文献   

10.
The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99(A) and localizes to the host cell membrane for α-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing α-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in α-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of α-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports α-ketoglutaric acid when the pathogen infects rice.  相似文献   

11.
Understanding the survival, multiplication, and transmission to seeds of plant pathogenic bacteria is central to study their pathogenesis. We hypothesized that the type III secretion system (T3SS), encoded by hrp genes, could have a role in host colonization by plant pathogenic bacteria. The seed-borne pathogen Xanthomonas fuscans subsp. fuscans causes common bacterial blight of bean (Phaseolus vulgaris). Directed mutagenesis in strain CFBP4834-R of X. fuscans subsp. fuscans and bacterial population density monitoring on bean leaves showed that strains with mutations in the hrp regulatory genes, hrpG and hrpX, were impaired in their phyllospheric growth, as in the null interaction with Escherichia coli C600 and bean. In the compatible interaction, CFBP4834-R reached high phyllospheric population densities and was transmitted to seeds at high frequencies with high densities. Strains with mutations in structural hrp genes maintained the same constant epiphytic population densities (1 x 10(5) CFU g(-1) of fresh weight) as in the incompatible interaction with Xanthomonas campestris pv. campestris ATCC 33913 and the bean. Low frequencies of transmission to seeds and low bacterial concentrations were recorded for CFBP4834-R hrp mutants and for ATCC 33913, whereas E. coli C600 was not transmitted. Moreover, unlike the wild-type strain, strains with mutations in hrp genes were not transmitted to seeds by vascular pathway. Transmission to seeds by floral structures remained possible for both. This study revealed the involvement of the X. fuscans subsp. fuscans T3SS in phyllospheric multiplication and systemic colonization of bean, leading to transmission to seeds. Our findings suggest a major contribution of hrp regulatory genes in host colonization processes.  相似文献   

12.
Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1- deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogenactivated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticusinduced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspaseindependent mechanism.  相似文献   

13.
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria utilizes a type III secretion (T3S) system to inject effector proteins into eukaryotic cells. T3S substrate specificity is controlled by HpaC, which promotes secretion of translocon and effector proteins but prevents efficient secretion of the early substrate HrpB2. HpaC and HrpB2 interact with the C-terminal domain (HrcU(C) ) of the FlhB/YscU homologue HrcU. Here, we provide experimental evidence that HrcU is proteolytically cleaved at the conserved NPTH motif, which is required for binding of both HpaC and HrpB2 to HrcU(C) . The results of mutant studies showed that cleavage of HrcU contributes to pathogenicity and secretion of late substrates but is dispensable for secretion of HrpB2, which is presumably secreted prior to HrcU cleavage. The introduction of a point mutation (Y318D) into HrcU(C) activated secretion of late substrates in the absence of HpaC and suppressed the hpaC mutant phenotype. However, secretion of HrpB2 was unaffected by HrcU(Y318D) , suggesting that the export of early and late substrates is controlled by independent mechanisms that can be uncoupled. As HrcU(Y318D) did not interact with HrpB2 and HpaC, we propose that the substrate specificity switch leads to the release of HrcU(C) -bound HrpB2 and HpaC.  相似文献   

14.
ETT2 is a second cryptic type III secretion system in Escherichia coli which was first discovered through the analysis of genome sequences of enterohemorrhagic E. coli O157:H7. Comparative analyses of Escherichia and Shigella genome sequences revealed that the ETT2 gene cluster is larger than was previously thought, encompassing homologues of genes from the Spi-1, Spi-2, and Spi-3 Salmonella pathogenicity islands. ETT2-associated genes, including regulators and chaperones, were found at the same chromosomal location in the majority of genome-sequenced strains, including the laboratory strain K-12. Using a PCR-based approach, we constructed a complete tiling path through the ETT2 gene cluster for 79 strains, including the well-characterized E. coli reference collection supplemented with additional pathotypes. The ETT2 gene cluster was found to be present in whole or in part in the majority of E. coli strains, whether pathogenic or commensal, with patterns of distribution and deletion mirroring the known phylogenetic structure of the species. In almost all strains, including enterohemorrhagic E. coli O157:H7, ETT2 has been subjected to varying degrees of mutational attrition that render it unable to encode a functioning secretion system. A second type III secretion system-associated locus that likely encodes the ETT2 translocation apparatus was found in some E. coli strains. Intact versions of both ETT2-related clusters are apparently present in enteroaggregative E. coli strain O42.  相似文献   

15.
Pathogenic Yersinia have a pronounced tropism for lymphatic tissues and harbor a virulence plasmid that encodes a type III secretion system, pTTSS, that transports Yops into host cells. Yops are critical virulence factors that prevent phagocytosis by macrophages and neutrophils and Yersinia mutants lacking one or more Yops are defective for survival in lymphatic tissues, liver, and gastrointestinal tract. However, here we demonstrate that Y. pseudotuberculosis (Yptb) mutants lacking the pTTSS survived as well as or better than wild-type (WT) Yptb in the mesenteric lymph nodes (MLN). Infection with pTTSS mutants caused lymphadenitis with little necrosis, whereas infection with WT Yptb provoked lymphadenitis with multiple necrotic suppurative foci. Gentamicin protection assays and microscopic examination of the MLN revealed that pTTSS mutants resided extracellularly adjacent to B and T lymphocytes in the cortex and paracortex. WT Yptb was found extracellularly adjacent to neutrophils and macrophages in necrotic areas and adjacent to B and T lymphocytes in less-inflamed areas. To determine whether lymphocytes protected pTTSS mutants from phagocytic cells, Rag1(-/-) mice were infected with pTTSS mutants or WT Yptb. pTTSS mutants but not WT, were impaired for survival in MLN of Rag1(-/-) mice, suggesting that lymphocyte-rich regions constitute a protective niche for pTTSS mutants. Finally, we show that invasin and the chromosomally encoded TTSS were not required for Yptb survival in MLN. In summary, chromosomally encoded factors are sufficient for Yptb replication in the cortex and paracortex of MLN; the pTTSS enables Yersinia to survive within phagocyte-rich areas of lymph nodes, and spread to other tissues.  相似文献   

16.
Fu ZQ  Guo M  Alfano JR 《Journal of bacteriology》2006,188(17):6060-6069
The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P. syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hypersensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally, UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly localized, resulting in disabled translocation of effectors into plant cells.  相似文献   

17.
Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that injects virulence effector proteins into host cells via a type III secretion system (TTSS). TTSS-deficient mutants have a Hrp- phenotype, that is, they cannot elicit the hypersensitive response (HR) in non-host plants or pathogenesis in host plants. Mutations in effector genes typically have weak virulence phenotypes (apparently due to redundancy), but deletion of six open reading frames (ORF) in the DC3000 conserved effector locus (CEL) reduces parasitic growth and abolishes disease symptoms without affecting function of the TTSS. The inability of the DeltaCEL mutant to cause disease symptoms in tomato was restored by a clone expressing two of the six ORF that had been deleted: CEL ORF3 (HopPtoM) and ORF4 (ShcM). A DeltahopPtoM::nptII mutant was constructed and found to grow like the wild type in tomato but to be strongly reduced in its production of necrotic lesion symptoms. HopPtoM expression in DC3000 was activated by the HrpL alternative sigma factor, and the protein was secreted by the Hrp TTSS in culture and translocated into Arabidopsis cells by the Hrp TTSS during infection. Secretion and translocation were dependent on ShcM, which was neither secreted nor translocated but, like typical TTSS chaperones, could be shown to interact with HopPtoM, its cognate effector, in yeast two-hybrid experiments. Thus, HopPtoM is a type III effector that, among known plant pathogen effectors, is unusual in making a major contribution to the elicitation of lesion symptoms but not growth in host tomato leaves.  相似文献   

18.
Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non-host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with effective plant defense. Both interactions require the Hrp (HR and pathogenicity) type III secretion system (TTSS), which injects Hop (Hrp outer protein) effectors into plant cells. Here, we demonstrate that HopPtoN is translocated into tomato cells via the Hrp TTSS. A hopPtoN mutant produced eightfold more necrotic 'speck' lesions on tomato leaves than did DC3000, but the mutant and the wild-type strain grew to the same level in infected leaves. In non-host N. tabacum leaves, the hopPtoN mutant produced more cell death, whereas a DC3000 strain overexpressing HopPtoN produced less cell death and associated electrolyte leakage in comparison with wild-type DC3000. Transient expression of HopPtoN via infection with a PVX viral vector enabled tomato and N. benthamiana plants to tolerate, with reduced disease lesions, challenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively. HopPtoN showed cysteine protease activity in vitro, and hopPtoN mutants altered in the predicted cysteine protease catalytic triad (C172S, H283A and D299A) lost HR suppression activity. These observations reveal that HopPtoN is a TTSS effector that can suppress plant cell death events in both compatible and incompatible interactions.  相似文献   

19.
Two thermostable phytases were identified from Thai isolates of Aspergillus japonicus BCC18313 (TR86) and Aspergillus niger BCC18081 (TR170). Both genes of 1404 bp length, coding for putative phytases of 468 amino acid residues, were cloned and transferred into Pichia pastoris . The recombinant phytases, r-PhyA86 and r-PhyA170, were expressed as active extracellular, glycosylated proteins with activities of 140 and 100 U mL−1, respectively. Both recombinant phytases exhibited high affinity for phytate but not for p -nitrophenyl phosphate. Optimal phytase activity was observed at 50 °C and pH 5.5. High thermostability, which is partly dependent on glycosylation, was demonstrated for both enzymes, as >50% activity was retained after heating at 100 °C for 10 min. The recombinant phytases also exhibited broad pH stability from 2.0 to 8.0 and are resistant to pepsin. In vitro digestibility tests suggested that r-PhyA86 and r-PhyA170 are at least as efficient as commercial phytase for hydrolyzing phytate in corn-based animal feed and are therefore suitable sources of phytase supplement.  相似文献   

20.
The nucleotide sequence of a 3.6-kb HindIII-SmaI DNA fragment of Xanthomonas campestris pv. campestris revealed four open reading frames which, based on sequence homologies, were designated tonB, exbB, exbD1, and exbD2. Analysis of translational fusions to alkaline phosphatase and beta-galactosidase confirmed that the TonB, ExbB, ExbD1, and ExbD2 proteins are anchored in the cytoplasmic membrane. The TonB protein of X. campestris pv. campestris lacks the conserved (Glu-Pro)n and (Lys-Pro)m repeats but harbors a 13-fold repeat of proline residues. By mutational analysis, the tonB, exbB, and exbD1 genes were shown to be essential for ferric iron import in X. campestris pv. campestris. In contrast, the exbD2 gene is not involved in the uptake of ferric iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号