首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xue Z  He Y  Ye K  Gu Z  Mao Y  Qi L 《The Journal of biological chemistry》2011,286(35):30859-30866
Inositol-requiring enzyme 1α (IRE1α), an endoplasmic reticulum-resident sensor for mammalian unfolded protein response, is a bifunctional enzyme containing kinase and RNase domains critical for trans-autophosphorylation and Xbp1 mRNA splicing, respectively, in response to endoplasmic reticulum stress. However, the amino acid residues important for its function and activation remain largely unexplored. Here, through analysis of IRE1α mutants associated with human somatic cancers, we have identified a highly conserved proline residue at position 830 (Pro(830)) that is critical for its structural integrity and hence, the activation of both kinase and RNase domains. Structural analysis revealed that Pro(830) may form a highly conserved structural linker with adjacent tryptophan and tyrosine residues at positions 833 and 945 (Trp(833) and Tyr(945)), thereby bridging the kinase and RNase domains. Indeed, mutation of Pro(830) to leucine (P830L) completely abolished the kinase and RNase activities, significantly decreased protein stability, and prevented oligomerization of IRE1α upon ER stress; similar observations were made for mutations of Trp(833) to alanine (W833A) and to a lesser extent for Y945A. Our finding may facilitate the identification of small molecules to compromise IRE1α function specifically.  相似文献   

2.
In the presence of guanidine hydrochloride, phosphoglycerate kinase from yeast can be reversibly denatured by either heating or cooling the protein solution above or below room temperature [Griko, Y. V., Venyaminov, S. Y., & Privalov, P. L. (1989) FEBS Lett. 244, 276-278]. The heat denaturation of PGK is characterized by the presence of a single peak in the excess heat capacity function obtained by differential scanning calorimetry. The transition curve approaches the two-state mechanism, indicating that the two domains of the molecule display strong cooperative interactions and that partially folded intermediates are not largely populated during the transition. On the contrary, the cold denaturation is characterized by the presence of two peaks in the heat capacity function. Analysis of the data indicates that at low temperatures the two domains behave independently of each other. The crystallographic structure of PGK has been used to identify the nature of the interactions between the two domains. These interactions involve primarily the apposition of two hydrophobic surfaces of approximately 480 A2 and nine hydrogen bonds. This information, in conjunction with experimental thermodynamic values for hydrophobic, hydrogen bonding interactions and statistical thermodynamic analysis, has been used to quantitatively account for the folding/unfolding behavior of PGK. It is shown that this type of analysis accurately predicts the cooperative behavior of the folding/unfolding transition and its dependence on GuHCl concentration.  相似文献   

3.
The global architecture of the cell nucleus and the spatial organization of chromatin play important roles in gene expression and nuclear function. Single-cell imaging and chromosome conformation capture-based techniques provide a wealth of information on the spatial organization of chromosomes. However, a mechanistic model that can account for all observed scaling behaviors governing long-range chromatin interactions is missing. Here we describe a model called constrained self-avoiding chromatin (C-SAC) for studying spatial structures of chromosomes, as the available space is a key determinant of chromosome folding. We studied large ensembles of model chromatin chains with appropriate fiber diameter, persistence length and excluded volume under spatial confinement. We show that the equilibrium ensemble of randomly folded chromosomes in the confined nuclear volume gives rise to the experimentally observed higher-order architecture of human chromosomes, including average scaling properties of mean-square spatial distance, end-to-end distance, contact probability and their chromosome-to-chromosome variabilities. Our results indicate that the overall structure of a human chromosome is dictated by the spatial confinement of the nuclear space, which may undergo significant tissue- and developmental stage-specific size changes.  相似文献   

4.
Domains within the multienzyme polyketide synthases are linked by noncatalytic sequences of variable length and unknown function. Recently, the crystal structure was reported of a portion of the linker between the acyltransferase (AT) and ketoreductase (KR) domains from module 1 of the erythromycin synthase (6-deoxyerythronolide B synthase), as a pseudodimer with the adjacent ketoreductase (KR). On the basis of this structure, the homologous linker region between the dehydratase (DH) and enoyl reductase (ER) domains in fully reducing modules has been proposed to occupy a position on the periphery of the polyketide synthases complex, as in porcine fatty acid synthase. We report here the expression and characterization of the same region of the 6-deoxyerythronolide B synthase module 1 AT-KR linker, without the adjacent KR domain (termed DeltaN AT1-KR1), as well as the corresponding section of the DH-ER linker. The linkers fold autonomously and are well structured. However, analytical gel filtration and ultracentrifugation analysis independently show that DeltaN AT1-KR1 is homodimeric in solution; site-directed mutagenesis further demonstrates that linker self-association is compatible with the formation of a linker-KR pseudodimer. Our data also strongly indicate that the DH-ER linker associates with the upstream DH domain. Both of these findings are incompatible with the proposed model for polyketide synthase architecture, suggesting that it is premature to allocate the linker regions to a position in the multienzymes based on the solved structure of animal fatty acid synthase.  相似文献   

5.
Inosine monophosphate dehydrogenase (IMPDH) is involved in de novo biosynthesis pathway of guanosine nucleotide. Type II isoform of this enzyme is selectively upregulated in lymphocytes and chronic myelogenous leukemia (CML) cells, and is an excellent target for antileukemic agent. The molecular dynamics simulation results (15?ns) of three unliganded 1B3O, 1JCN, and 1JR1 structures have clearly revealed that IN, IC (N- and C-terminal of catalytic domains) and C1, C2 (cystathionine-beta-synthase-1 and 2) domains of IMPDH enzyme have been stabilized by six conserved water (center) mediated salt bridge interactions. These conserved water molecules could be involved in interdomain or intradomain recognition, intradomain coupling, and charge transfer processes. The binding propensity of cystathionine-beta-synthase domain to catalytic domain (through conserved water-mediated salt bridges) has provided a new insight to the biochemistry of IMPDH. Stereospecific interaction of IN with C2 domain through conserved water molecule (K109–WII 1–D215/D216) is observed to be unique in the simulated structure of hIMPDH-II. The geometrical/structural consequences and topological feature around the WII 1 water center may be utilized for isoform specific inhibitor design for CML cancer.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:1  相似文献   

6.
Y M Hou  P Schimmel 《Biochemistry》1989,28(17):6800-6804
We observed recently that a single G3.U70 base pair in the amino acid acceptor stem of an Escherichia coli alanine tRNA is a major determinant for its identity. Inspection of tRNA sequences shows that G3.U70 is unique to alanine in E. coli and is present in eucaryotic cytoplasmic alanine tRNAs. We show here that single nucleotide changes of G3.U70 to A3.U70 or to G3.C70 eliminate in vitro aminoacylation of an insect and of a human alanine tRNA by the respective homologous synthetase. Compared to the influence of G3.U70, other sequence variations in tRNAAla have a relatively small effect on aminoacylation by the insect and human enzymes. In addition, while these eucaryotic tRNAs have nucleotide differences from E. coli alanine tRNA, they are heterologously charged only with alanine when expressed in E. coli. The results indicate a functional role for G3.U70 that is conserved in evolution. They also suggest that the sequence differences between E. coli and the eucaryotic alanine tRNAs at sites other than the conserved G3.U70 do not create major determinants for recognition by any other bacterial enzyme.  相似文献   

7.
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.  相似文献   

8.
9.
Tyrosine 785 is a major determinant of Trk--substrate interaction.   总被引:12,自引:3,他引:9       下载免费PDF全文
Interaction of the nerve growth factor (NGF) receptor/Trk with cellular substrates was investigated by transient co-overexpression in human 293 fibroblasts using ET-R, a chimeric receptor consisting of the epidermal growth factor receptor (EGF-R) extracellular ligand binding domain and the Trk transmembrane and intracellular signal-generating sequences. The chimera was fully functional, and associated with and phosphorylated phospholipase C gamma (PLC gamma), ras GTPase-activating protein (GAP) and the non-catalytic subunit of phosphatidylinositol-3'-kinase, p85, in a ligand-dependent manner. Deletion of 15 C-terminal amino acids, including tyrosine 785 (Y-785) abrogated receptor and substrate phosphorylation activities. Mutation of Y-785 to phenylalanine somewhat impaired receptor phosphorylation activity, which was reflected in reduced GAP and p85 phosphorylation. In contrast, ET-YF phosphorylation of PLC gamma was significantly reduced, while the high affinity association potential with this substrate was abrogated by this point mutation in vitro and in intact cells. Furthermore, a tyrosine-phosphorylated synthetic C-terminal peptide competitively inhibited Trk cytoplasmic domain association with PLC gamma. Thus, the short C-terminal tail appears to be a crucial structural element of the Trk cytoplasmic domain, and phosphorylated Y-785 is a major and selective interaction site for PLC gamma.  相似文献   

10.
The 70-kDa heat shock proteins (Hsp70) are essential members of the cellular chaperone machinery that assists protein-folding processes. To perform their functions Hsp70 chaperones toggle between two nucleotide-controlled conformational states. ATP binding to the ATPase domain triggers the transition to the low affinity state of the substrate-binding domain, while substrate binding to the substrate-binding domain in synergism with the action of a J-domain-containing cochaperone stimulates ATP hydrolysis and thereby transition to the high affinity state. Thus, ATPase and substrate-binding domains mutually affect each other through an allosteric control mechanism, the basis of which is largely unknown. In this study we identified two positively charged, surface-exposed residues in the ATPase domain and a negatively charged residue in the linker connecting both domains that are important for interdomain communication. Furthermore, we demonstrate that the linker alone is sufficient to stimulate the ATPase activity, an ability that is lost upon amino acid replacement. The linker therefore is most likely the lever that is wielded by the substrate-binding domain and the cochaperone onto the ATPase domain to induce a conformation favorable for ATP hydrolysis. Based on our results we propose a mechanism of interdomain communication.  相似文献   

11.
Fang X  Pan T  Sosnick TR 《Biochemistry》1999,38(51):16840-16846
The folding thermodynamics of the catalytic domain from the Bacillus subtilis RNase P RNA is analyzed using circular dichroism and fluorescence spectroscopies, hydroxyl radical protection, and catalytic activity. Folding of this 255-nucleotide ribozyme can be described with three populated species: unfolded (U), intermediate (I), and native (N) states. The U-to-I transition primarily involves secondary structure formation, whereas the I-to-N transition is dominated by tertiary structure formation. The I-to-N transition is highly cooperative as indicated by the coincidence of the four probes applied here. Two isothermal methods are used to determine the stability of the N state relative to the I state at 10 and 37 degrees C. The first method measures the extent of Mg(2+)-induced folding without urea or at constant urea concentrations. The second method measures the extent of urea-induced unfolding at constant Mg(2+) concentrations. Via application of a cooperative binding analysis, the Mg(2+) transition midpoint (K(Mg)), the Hill constant (n), and the urea-dependent surface burial parameter (m value) determined by both methods are identical, indicating that they report the same, reversible folding event. Three conclusions can be drawn from these results. (i) The folding free energy of a Mg(2+)-dependent tertiary RNA structure can be described by the K(Mg) and n parameters according to a cooperative Mg(2+) binding model. (ii) The Hill constant for this tertiary RNA structure probably represents the differential number of Mg(2+) ions bound in the I-to-N transition. (iii) Under physiological conditions, the stability of this large ribozyme is similar to that of small globular proteins.  相似文献   

12.
The cooperative nature of the protein folding process is independent of the characteristic fold and the specific secondary structure attributes of a globular protein. A general folding/unfolding model should, therefore, be based upon structural features that transcend the peculiarities of α-helices, β-sheets, and other structural motifs found in proteins. The studies presented in this paper suggest that a single structural characteristic common to all globular proteins is essential for cooperative folding. The formation of a partly folded state from the native state results in the exposure to solvent of two distinct regions: (1) the portions of the protein that are unfolded; and (2) the “complementary surfaces,” located in the regions of the protein that remain folded. The cooperative character of the folding/unfolding transition is determined largely by the energetics of exposing complementary surface regions to the solvent. By definition, complementary regions are present only in partly folded states; they are absent from the native and unfolded states. An unfavorable free energy lowers the probability of partly folded states and increases the cooperativity of the transition. In this paper we present a mathematical formulation of this behavior and develop a general cooperative folding/unfolding model, termed the “complementary region” (CORE) model. This model successfully reproduces the main properties of folding/unfolding transitions without limiting the number of partly folded states accessible to the protein, thereby permitting a systematic examination of the structural and solvent conditions under which intermediates become populated. It is shown that the CORE model predicts two-state folding/unfolding behavior, even though the two-state character is not assumed in the model. © 1993 Wiley-Liss, Inc.  相似文献   

13.
We have isolated a novel yeast gene, HAL1, which upon overexpression improves growth under salt stress. In addition, disruption of this gene decreases salt tolerance. Therefore HAL1 constitutes a rate-limiting determinant for halotolerance. It encodes a polar protein of 32 kDa located in the yeast cytoplasm and unrelated to sequences in data banks. The expression of this gene is increased by high concentrations of either NaCl, KCl or sorbitol. On the other hand, the growth advantage obtained by overexpression of HAL1 is specific for NaCl stress. In cells overexpressing HAL1, sodium toxicity seems to be counteracted by an increased accumulation of potassium. The HAL1 protein could interact with the transport systems which determine intracellular K+ homeostasis. The HAL1 gene and encoded protein are conserved in plants, being induced in these organisms by salt stress and abscisic acid. These results suggest that yeast serves as a convenient model system for the molecular biology of plant salt tolerance.  相似文献   

14.
To identify the contacts that stabilise the rate-limiting transition state for folding of FNfn10 (the tenth fnIII domain of human fibronectin), 42 mutants have been analysed at 29 positions across this domain. An anomalous response to mutation means that structure formation in the A, B and G strands cannot be evaluated by this method. In all the residues analysed, phi-values are fractional and no completely structured region is observed. The analysis reveals that hydrophobic residues from the central strands of the beta-sandwich form a large core of interactions in the transition state. Br?nsted analysis shows that the stabilisation energy from the amino acid side-chains in the transition state is approximately 40 % of that in the native state. The protein folds by a nucleation-condensation mechanism, and tertiary interactions within the core make up the folding nucleus. Local interactions, in turns and loops, are apparently much less significant. Comparison with an homologous domain from human tenascin (TNfn3), shows that FNfn10 has a more extended, structured transition state spanning three different "layers" of the beta-sandwich. The results support the hypothesis that interactions in the common structural core guide the folding of these domains.  相似文献   

15.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

16.
Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature, concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation, and drug design.  相似文献   

17.
Autotransporter secretion represents a unique mechanism that Gram-negative bacteria employ to deliver proteins to their cell surface. BrkA is a Bordetella pertussis autotransporter protein that mediates serum resistance and contributes to adherence of the bacterium to host cells. BrkA is a 103 kDa protein that is cleaved to form a 73 kDa alpha-domain and a 30 kDa beta domain. The alpha domain, also referred to as the passenger domain, is responsible for the effector functions of the protein, whereas the beta domain serves as a transporter. In an effort to characterize BrkA secretion, we have shown that BrkA has a 42 amino acid signal peptide for transit across the cytoplasmic membrane, and a translocation unit made up of a short linker region fused to the beta-domain to ferry the passenger domain to the bacterial surface through a channel formed by the beta-domain. In this report, we provide genetic, biochemical and structural evidence demonstrating that a region within the BrkA passenger (Glu601-Ala692) is necessary for folding the passenger. This region is not required for surface display in the outer membrane protease OmpT-deficient Escherichia coli strain UT5600. However, a BrkA mutant protein bearing a deletion in this region is susceptible to digestion when expressed in E. coli strains expressing OmpT suggesting that the region is required to maintain a stable structure. The instability of the deletion mutant can be rescued by surface expressing Glu601-Ala692in trans suggesting that this region is acting as an intramolecular chaperone to effect folding of the passenger concurrent with or following translocation across the outer membrane.  相似文献   

18.
We have isolated and determined DNA sequence for the 5-flanking regions of three Arabidopsis thaliana polyubiquitin genes, UBQ3, UBQ10, and UBQ11. Comparison to cDNA sequences revealed the presence of an intron in the 5-untranslated region at the same position immediately upstream of the initiator methionine codon in each of the three genes. An intron at this position is also present in two sunflower and two maize polyubiquitin genes. An intron is also found in the 5-untranslated regions of several animal polyubiquitin genes, although the exact intron position is not conserved among them, and none are in the same position as those in the higher plant polyubiquitin genes. Chimeric genes containing the 5-flanking regions of UBQ3, UBQ10, and UBQ11 in front of the coding regions for the reporter enzyme Escherichia coli -glucuronidase (GUS) were constructed. When introduced transiently into Arabidopsis leaves via microprojectile bombardment, all resulted in readily detectable levels of GUS activity that were quantitatively similar. The introns of UBQ3 and UBQ10 in the corresponding promoter fragments were removed by replacement with flanking cDNA sequences and chimeric genes constructed. These constructs resulted in 2.5- to 3-fold lower levels of marker enzyme activity after transient introduction into Arabidopsis leaves. The UBQ10 promoter without the 5 intron placed upstream of firefly luciferase (LUX) resulted in an average of 3-fold lower LUX activity than from an equivalent construct with the UBQ10 intron. A UBQ3 promoter cassette was constructed for the constitutive expression of open reading frames in dicot plants and it produced readily detectable levels of GUS activity in transient assays.  相似文献   

19.
20.
Ligand-gated ion channels (LGICs) mediate rapid chemical neurotransmission. This gene superfamily includes the nicotinic acetylcholine, GABAA/C, 5-hydroxytryptamine type 3, and glycine receptors. A signature disulfide loop (Cys loop) in the extracellular domain is a structural motif common to all LGIC member subunits. Here we report that a highly conserved aspartic acid residue within the Cys loop at position 148 (Asp-148) of the glycine receptor alpha1 subunit is critical in the process of receptor activation. Mutation of this acidic residue to the basic amino acid lysine produces a large decrease in the potency of glycine, produces a decrease in the Hill slope, and converts taurine from a full agonist to a partial agonist; these data are consistent with a molecular defect in the receptor gating mechanism. Additional mutation of Asp-148 shows that alterations in the EC50 for agonists are dependent upon the charge of the side chain at this position and not molecular volume, polarity, or hydropathy. This study implicates negative charge at position Asp-148 as a critical component of the process in which agonist binding is coupled to channel gating. This finding adds to an emerging body of evidence supporting the involvement of the Cys loop in the gating mechanism of the LGICs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号