首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas putida (NBAII-RPF9) was identified as an abiotic stress tolerant bacterium capable of growing at 45 °C as well as in 1 M NaCl. The proteins expressed by this bacterium when subjected to these two stresses were analyzed by 2D gel and MALDI-TOF/MS. Two parameters viz., heat/saline shock (20 min at 45 °C/1 M solid NaCl added at mid log phase and incubated for 1 h) and heat/saline tolerance (24 h growth at 45 °C/in 1 M NaCl) were studied. Under heat shock 13 upregulated proteins and 1 downregulated protein were identified and under tolerance 6 upregulated proteins were identified. GroES and GroEL proteins were expressed under both tolerance and shock. Under saline shock 11 upregulated proteins were identified whereas under saline tolerance 6 upregulated proteins were identified and all these proteins had pI between 3 and 10 with molecular weights ranging from 14.3 to 97 kDa. Aspartate carbamoyltransferase was common under both the saline conditions studied. The analysis revealed involvement of heat stress responsive molecular chaperones and membrane proteins during heat stress. During salt stress, proteins involved in metabolic processes were found to be upregulated to favor growth and adaptation of the bacterium. Heat shock chaperones viz., DnaK and DnaJ were expressed under both saline and heat stress. This is the first report of protein profile obtained from a single bacterium under saline and heat stress and the studies reveal the complex mechanisms adapted by the organism to survive under high temperature or saline conditions.  相似文献   

2.
Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.  相似文献   

3.
In order to understand the functional role of CPR1 in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wildtype strain of KNU5377. Among the proteins, Sod1p, Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the cpr1Delta mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the cpr1Delta mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.  相似文献   

4.
Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent and significance can vary substantially.  相似文献   

5.
The growth of the wild-type and three salt tolerant mutants of barnyard grass ( Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants ( fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 m M NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K +/Na + ratios or enhanced Na + uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.  相似文献   

6.
Oxidative stress has been implicated in dysfunctional mitochondria in diabetes. Tyrosine nitration of mitochondrial proteins was observed under conditions of oxidative stress. We hypothesize that nitration of mitochondrial proteins is a common mechanism by which oxidative stress causes dysfunctional mitochondria. The putative mechanism of nitration in a diabetic model of oxidative stress and functional changes of nitrated proteins were studied in this work. As a source of mitochondria, alloxan-susceptible and alloxan-resistant mice were used. These inbred strains are distinguished by the differential ability to detoxify free radicals. A proteomic approach revealed significant similarity between patterns of tyrosine-nitrated proteins generated in the heart mitochondria under different in vitro and in vivo conditions of oxidative stress. This observation points to a common nitrating species, which may derive from different nitrating pathways in vivo and may be responsible for the majority of nitrotyrosine formed. Functional studies show that protein nitration has an adverse effect on protein function and that protection against nitration protects functional properties of proteins. Because proteins that undergo nitration are involved in major mitochondrial functions, such as energy production, antioxidant defense, and apoptosis, we concluded that tyrosine nitration of mitochondrial proteins may lead to dysfunctional mitochondria in diabetes.  相似文献   

7.
Oxidative stress and ferrous metabolism are important in the pathogenesis in Parkinson's disease. In dopaminergic neurons, several stress proteins are upregulated under oxidative stress. To clarify this mechanism, we investigated hemin-related signal transduction and the induction of oxidative stress-related proteins in SH-SY5Y cells. We identified phosphatidylinositol 3-kinase (PI3K) and Nrf2 as important molecules in the induction of heme oxygenase-1, thioredoxin, and peroxiredoxin-I. PI3K-related signal controlled Nrf2 activation, and consequently, PI3K inhibitors blocked the nuclear translocation of Nrf2 and induction of stress proteins. These observations suggest that PI3K and Nrf2 are key molecules in maintaining suitable conditions under oxidative stress and ferrous metabolism.  相似文献   

8.
Enhanced salt tolerance of rice seedlings by abscisic acid (ABA) pretreatment was observed from phenotypic and physiological analyses. Total proteins from rice roots treated with ABA plus subsequent salt stress were analyzed by using proteomics method. Results showed that, 40 protein spots were uniquely upregulated in the seedlings under the condition of ABA pretreatment plus subsequent salt stress, whereas only 16 under the condition of salt treatment. About 78% (31 spots) of the 40 protein spots were only upregulated in the presence of the subsequent salt stress, indicating that plants might have an economical strategy to prevent energy loss under a false alarm. The results also showed that more enzymes involved in energy metabolism, defense, primary metabolism, etc. were upregulated uniquely in ABA-pretreated rice seedlings, suggesting more abundant energy supply, more active anabolism (nitrogen, nucleotide acid, carbohydrate, etc), and more comprehensive defense systems in ABA-pretreated seedlings than in salt stressed ones.  相似文献   

9.
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress.  相似文献   

10.
Following a N-methyl-N'-nitro-N-nitrosoguanidine-based mutagenesis of Synechococcus elongatus PCC 7942 wild type, we were able to select several mutants with an enhanced tolerance toward the herbicide bentazone (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide). Mutant Mu1 has in part been previously characterized. In the present paper we report on another mutant, called Mu2, which also has a higher tolerance toward bentazone. Since Mu2 showed a better growth than WT when cultivated with elevated NaCl concentrations in the growth medium and since S. elongatus WT has previously been classified to be low salt tolerant, we were especially interested in the identification of the modifications conferring this higher salt tolerance to mutant Mu2. Immunoblot analyses provided evidence that Mu2 had a constitutively higher expression of PsbO and of IsiA. In addition, in Mu2 a significantly higher concentration of IdiA was detected under salt stress as compared to WT. These three proteins most likely contribute to a better protection and/or stabilization of photosystem II. Moreover, Mu2 had a higher amount of the photosystem I reaction center proteins PsaAB under salt stress than WT. In addition, the amount of the ferredoxin:NADP+ oxidoreductase and also of the ATP synthase was constitutively higher in Mu2 than in WT. In contrast to WT the latter two proteins did not decrease under salt stress in Mu2. Therefore, it can be assumed that Mu2 could maintain a high cyclic electron transport activity around photosystem I under salt stress. It can be assumed that the combination of these modifications of the electron transport chain cause a better protection of photosystem II against oxidative damage and cause an increase of cyclic electron transport activity around photosystem I with ATP synthesis. Thus, the overall cellular energization in Mu2 relative to WT is improved. Together with putative other not yet identified modifications this seems to enable Mu2 to energize its cytoplasmic membrane-localized ion pumps more effectively than WT and, as a consequence, to keep the intracellular NaCl concentration low.  相似文献   

11.
12.
Although canola is a moderately salt‐tolerant species, its growth, seed yield, and oil production are markedly reduced under salt stress, particularly during the early vegetative growth stage. To identify the mechanisms of salt responsiveness in canola, the proteins expressed in the second and third newly developed leaves of salt‐tolerant, Hyola 308, and salt‐sensitive, Sarigol, cultivars were analyzed. Plants were exposed to 0, 175, and 350 mM NaCl during the vegetative stage. An increase in the Na content and a reduction in growth were observed in the third leaves compared to the second leaves. The accumulation of Na was more pronounced in the salt‐sensitive compared with the salt‐tolerant genotype. Out of 900 protein spots detected on 2‐DE gels, 44 and 31 proteins were differentially expressed in the tolerant and susceptible genotypes, respectively. Cluster analysis based on the expression level of total and responsive proteins indicated that the second leaves had a discriminator role between the two genotypes at both salinity levels. Using MS analysis, 46 proteins could be identified including proteins involved in responses to oxidative stress, energy production, electron transport, translation, and photosynthesis. Our results suggest that these proteins might play roles in canola adaptation to salt stress.  相似文献   

13.
Park SJ  Joo WA  Choi J  Lee SH  Kim CW 《Proteomics》2004,4(11):3632-3641
Extremely halophilic Archaea, Halobacterium salinarum live in hypersaline habitats and maintain an osmotic balance of their cytoplasm by accumulating high concentrations of salt (mainly KCl). Therefore, their enzymes adapted to high NaCl concentrations offer a multitude of acutal or potential applications such as biocatalysts in the presence of high salt concentrations. In this study, the protein expression profile of H. salinarum cultured under different NaCl concentrations (3.5 M, 4.3 M, and 6.0 M) was investigated using two-dimensional gel electrophoresis (2-DE). As a result of 2-DE, the protein spots concentrated in acidic range at pH 3-10 were separated effectively using pH 3.5-4.5 ultrazoom IPG DryStrips. The proteins which proved to be upregulated or downregulated in 2-DE gel were digested with trypsin and identified with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and electrospray ionization quadrupole (ESI-Q) TOF-mass spectrometry. Most proteins were identified as known annotated proteins based on sequence homology and few as unknown hypothetical proteins. Among proteins identified, an enzyme named inosine monophosphate dehydrogenase (IMPDH) was selected based on the possibility of its industrial application. IMPDH gene (1.6 kb fragment) expected to exist in H. salinarum was amplified by polymerase chain reaction (PCR) and expressed in Escherichia coli strain, BL21 (DE3) using a pGEX-KG vector. Recombinant IMPDH purified from H. salinarum has a higher activity in the presence of salt than in the absence of salt.  相似文献   

14.
Salinity stress is a major abiotic stress that limits agriculture productivity worldwide. Rice is a model plant of monocotyledons, including cereal crops. Studies have suggested a critical role of protein phosphorylation in salt stress response in plants. However, the phosphoproteome in rice, particularly under salinity stress, has not been well studied. Here, we use Pro-Q Diamond Phosphoprotein Stain to study rice phosphoproteome differential expression under salt stress. Seventeen differentially upregulated and 11 differentially downregulated putative phosphoproteins have been identified. Further analyses indicate that 10 of the 17 upregulated proteins are probably upregulated at post-translational level instead of the protein concentration. Meanwhile, we have identified 31 salt stress differentially regulated proteins using SYPRO Ruby stain. While eight of them are known salt stress response proteins, the majority has not been reported in the literature. Our studies have provided valuable new insight into plant response to salinity stress.  相似文献   

15.
To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to improve the tolerance of crops to complex, multiple environmental stresses.  相似文献   

16.
Salinity together with waterlogging or flooding, a condition that occurs frequently in the field, can cause severe damage to crops. Combined flooding and salinity decreases the growth and survival of plants more than either stress alone. We report here the first proteomic analysis to investigate the global effects of saline flooding on multiple metabolic pathways. Soybean seedlings at the emergence (VE) stage were treated with 100 mM NaCl and flooded with water or 100 mM sodium chloride solution for 2 days. Proteins were extracted from hypocotyl and root samples and analyzed by two-dimensional gel electrophoresis followed by MALDI-TOF, MALDI-TOF/TOF mass spectrometry or immunoblotting. A total of 43 reproducibly resolved, differentially expressed protein spots visualized by Coomassie brilliant blue staining were identified by MALDI-TOF MS. Identities of several proteins were also validated by MS/MS analysis or immunoblot analysis. Twenty-nine proteins were upregulated, eight proteins were downregulated and six spots were newly induced. The identified proteins include well-known salt and flooding induced proteins as well as novel proteins expressed by the salinity-flooding combined stress. The comparative analysis identified changes at the proteome level that are both specific and part of a common or shared response. The identification of such differentially expressed proteins provides new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to a combination of flooding and salinity.  相似文献   

17.
We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase Cdelta. Here, we analyzed protein expression profiles of fractionated nuclei, mitochondria, raw endoplasmic reticula, and cytosols of NSC606985-induced apoptotic AML cell line NB4 cells by two-dimensional electrophoresis combined with MALDI-TOF/TOF tandem mass spectrometry. In total, 90 unique deregulated proteins, including 16 compartment-compartment translocated ones, were identified. They contributed to multiple functional activities such as DNA damage repairing, chromosome assembly, mRNA processing, biosynthesis, modification, and degradation of proteins. More interestingly, several increased oxidative stress-related proteins mainly presented in mitochondria, while upregulated glycolysis proteins mainly occurred in the nuclei. With their functional analyses, the possible roles of these deregulated proteins in NSC606985-induced apoptosis were discussed. Collectively, these discoveries would shed new insights for systematically understanding the mechanisms of the camptothecin-induced apoptosis.  相似文献   

18.
利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因   总被引:1,自引:0,他引:1  
为探究淹水胁迫下BnERF调节的耐淹防御相关途径,应用RNA-seq技术,对淹水6小时后的拟南芥(Arabidopsis thaliana)野生型(WT)和转BnERF株系(E33)幼苗进行基因表达分析。结果表明,淹水3天后,E33表现出较强的耐淹性,地上部生长状况和根系发育均明显强于野生型。E33幼苗未淹水处理时相对于野生型单独上调的基因有9个,4个为膜结合蛋白,其中2个参与MAPK级联途径,其它5个参与氧化胁迫及水分调节途径;与未淹水野生型相比,无论是未淹水处理还是淹水6小时后的E33幼苗中缺氧响应、抗氧化防护及细胞、器官发育相关基因的表达量均上调。另外,淹水6小时后E33的差异基因并未完全覆盖淹水6小时后野生型的差异基因;E33幼苗中缺氧响应、氧化胁迫响应、能量的产生与转变、乙醇代谢途径中的基因以及乙烯响应因子基因的表达量都明显高于野生型。上述结果表明,BnERF直接或间接调节植物的淹水胁迫相关生理代谢途径,参与淹水胁迫的防御过程。  相似文献   

19.
Responses of plants to salinity stress and the development of salt tolerance are extremely complex. Proteomics is a powerful technique to identify proteins associated with a particular environmental or developmental signal. We employed a proteomic approach to further understand the mechanism of plant responses to salinity in a salt-tolerant (Afzal) and a salt-sensitive (Line 527) genotype of barley. At the 4-leaf stage, plants were exposed to 0 (control) or 300 mM NaCl. Salt treatment was maintained for 3 weeks. Total proteins of leaf 4 were extracted and separated by two-dimensional gel electrophoresis. More than 500 protein spots were reproducibly detected. Of these, 44 spots showed significant changes to salt treatment compared to the control: 43 spots were upregulated and 1 spot was downregulated. Using MALDI-TOF-TOF MS, we identified 44 cellular proteins have been identified, which represented 18 different proteins and were classified into seven categories and a group with unknown biological function. These proteins were involved in various many cellular functions. Up regulation of proteins which involved in reactive oxygen species scavenging, signal transduction, protein processing and cell wall may increase plant adaptation to salt stress. The upregulation of the three of four antioxidant proteins (thioredoxin, methionine sulfoxide reductase and dehydroascorbate reductase) in susceptible genotype Line 527 suggesting a different tolerance mechanism (such as tissue tolerance) to tolerate a salinity condition in comparison with the salt sensitive genotype.  相似文献   

20.
The CCCH type zinc finger proteins are a super family involved in many aspects of plant growth and development. In this study, we investigated the response of one CCCH type zinc finger protein AtZFP1 (At2g25900) to salt stress in Arabidopsis. The expression of AtZFP1 was upregulated by salt stress. Compared to transgenic strains, the germination rate, emerging rate of cotyledons and root length of wild plants were significantly lower under NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. At germination stage, it was mainly osmotic stress when treated with NaCl. Relative to wild plants, overexpression strains maintained a higher K+, K+/Na+, chlorophyll and proline content, and lower Na+ and MDA content. Quantitative real-time PCR analysis revealed that the expression of stress related marker genes KIN1, RD29B and RD22 increased more significantly in transgenic strains by salt stress. Overexpression of AtZFP1 also enhanced oxidative and osmotic stress tolerance which was determined by measuring the expression of a set of antioxidant genes, osmotic stress genes and ion transport protein genes such as SOS1, AtP5CS1 and AtGSTU5. Overall, our results suggest that overexpression of AtZFP1 enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号