首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Alvinella pompejana is a tubicolous polychaete that dwells in the hottest part of the hydrothermal vent ecosystem in a highly variable mixture of vent (350 degrees C, anoxic, CO(2)- and sulfide-rich) and deep-sea (2 degrees C, mildly hypoxic) waters. This species has developed distinct-and specifically respiratory-adaptations to this challenging environment. An internal gas exchange system has recently been described, along with the report of an intracellular coelomic hemoglobin, in addition to the previously known extracellular vascular hemoglobin. This article reports the structure of coelomic hemoglobin and the functional properties of both hemoglobins in order to assess possible oxygen transfer. Coelomocytes contain a unique monomeric hemoglobin with a molecular weight of 14,810+/-1.5 Da, as determined by mass spectrometry. The functional properties of both hemoglobins are unexpectedly very similar under the same conditions of pH (6.1-8.2) and temperature (10 degrees -40 degrees C). The oxygen affinity of both proteins is relatively high (P50=0.66 Torr at 20 degrees C and pH 7), which facilitates oxygen uptake from the hypoxic environment. A strong Bohr effect (Phi ranging from -0.8 to -1.0) allows the release of oxygen to acidic tissues. Such similar properties imply a possible bidirectional transfer of oxygen between the two hemoglobins in the perioesophagal pouch, a mechanism that could moderate environmental variations of oxygen concentration and maintain brain oxygenation.  相似文献   

2.
We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.  相似文献   

3.
Branchipolynoe symmytilida and B. seepensis are two scaleworms (Polychaeta; Polynoidae) living commensally in the mantle cavity of deep-sea hydrothermal vent and cold-seep mussels. In contrast with littoral members of this family, the two species exhibit a large amount of extracellular hemoglobin (Hb) in their coelomic fluid. Gel filtration revealed the existence of four different Hbs: one minor, high molecular mass (3x10(6) Da) Hb, V1-Hb, reminiscent of a vascular hexagonal bilayer annelid Hb; two major coelomic Hbs, C1-Hb, and C2-Hb, with unusual masses for extracellular annelid Hbs of 153 and 124 kDa respectively; and a minor probably coelomic Hb of 23 kDa (C3-Hb). Using electrospray ionization mass spectrometry, SDS-PAGE after subtilisin treatment, and tandem mass spectrometry, we showed that C1-Hb is a trimer of a 57,996 Da chain and C2-Hb is a dimer of a 57,648 Da chain, each chain being a four-domain/four-heme polypeptide. This multimeric, multidomain arrangement is unique among annelid Hbs and appears different from that of other known multidomain Hbs.  相似文献   

4.
The Hbs and the major electrophoretic Hb components (isoHbs) were isolated from three species of the trematodes, Explanatum explanatum (Ee), Gastrothylax crumenifer (Gc) and Paramphistomum epiclitum (Pe), that parasitise the common Indian water buffalo Bubalus bubalis. The Hbs are monomeric and resemble the so-called nonfunctional mutant hemoglobins that have Tyr at B10 or E7 positions (replacing Leu and the His residues, respectively). However, they are capable of binding with O2 and CO. O2 equilibrium studies of trematode Hb isoforms reveal extremely high O2 affinities, with half-saturation O2 tension (P50) values up to 800 times lower than those of human hemoglobins. This correlates with Tyr residues at B10 and at the distal position (E7) that decrease the O2 dissociation rate by contributing hydrogen bonds (H-bonds) to the bound O2. These substitutions also increase the O2 association rates either due to orientation of E7-Tyr towards the solvent and/or by sterically hindering the entry of water molecules into the heme pocket. The latter may account for the low rate of autoxidation of trematode Hbs. The Hbs and their isoforms from different species exhibited pronounced variation in O2 affinity, which may relate to subtle differences in the structure of the heme pocket. The O2 affinities of the composite (unfractionated) Hbs were intermediate to those of the individual Hb isoform. The P50 values of Hbs here obtained by direct O2 equilibrium measurements differed from those calculated from kinetic data already published [Kiger, L., Rashid, A. K., Griffon, N., Haque, M., Moens, L.,Gibson, Q. H., Poyart, C., & Marden, M. C. (1998). Biophys. J. 75, 990-998.] Intermediate state(s) due to slow reorientation of E7-Tyr may account for this difference. Some Hb isoforms showed slight (either normal or reverse) Bohr effects. The hyperbolic O2 equilibrium curve, Hill coefficient (n) values near unity accord with a monomeric nature of trematode Hbs. In marked contrast to vertebrate Hbs, CO does not seem to compete effectively with O2 in trematode Hbs, as evident from partition coefficient values (M) below 1.  相似文献   

5.
1. The three coelomic cell hemoglobins from Thalassema mellita have been isolated to purity; the two major components have dimeric structure while the third minor component has monomeric structure. 2. Acid-urea Triton gel electrophoresis of the isolated hemoglobins identified three polypeptides among the three hemoglobins, one of the dimeric hemoglobins is a heterodimer (pI = 4.9) with one polypeptide sharing identity with the monomeric hemoglobin (pI = 6.3), while the other dimer is a homodimer (pI = 4.5) consisting of the third polypeptide. 3. SDS gel electrophoresis suggests that the two dimeric hemoglobins have interpolypeptide disulfide bonds. 4. Coelomic cell suspensions and lysed coelomic cells have PO2 at half saturation (P50) of 2.5-3.0 mmHg and cooperativity values (n) of 1.5-1.93. 5. All three isolated hemoglobins have higher oxygen affinities and lower cooperativity values (P50 = 1-2 mmHg, n = 1-1.3) than lysed coelomic cells suggesting some heterotrophic and homotrophic interactions.  相似文献   

6.
We have used a stopped flow rapid reaction pH apparatus to investigate the carbamate equilibrium in glycylglycine solutions and in three biological tissues, human plasma, sheep muscle, and sheep brain, as well as to investigate the kinetics of carbamate formation in glyclyglycine solution and in human plasma. The rapid reaction apparatus was equipped with a pH sensitive glass electrode in order to follow the time course of pH from 0.005 to 100 s after rapid mixing of a solution of amine or protein and CO2. Two phases of the pH curve were observed: a fast phase representing carbamate formation, and a slow phase due to the hydration of CO2 which was uncatalyzed since a carbonic anhydrase inhibitor was added to the biological solutions. From the time course of pH change during the fast phase K2, the R-NH2 ionization constant, and Kc, the carbamate equilibrium constant as well as the velocity constant for the formation of carbamate, ka could be calculated from data at different pH and pCO2. The carbamate formed in glycylglycine solutions over a wide range of pH and pCO2 was found consistent with the theory of carbamate formation and with published data. At ionic strength 0.16 and 37 degrees pK is 7.67. pKc 4.58. The heat of the carbamate reaction (deltaH) was calculated to be -3.2 kcal/mol between 20 degrees and 37 degrees. Kt of glycylglycine depends quantitatively on ionic strength as predicted by the Debye-Huckel theory. With ionic strength 0.16 ku was found to be 2,500 M1 S1 at 37 degrees. The activation energy of carbamate formation is 6.7 kcal/mol. Carbamate measurements in human plasma at pCO2 from 38 to 359 Torr. pH from 6.9 to 8.3, temperature 37 degrees, and ionic strength 0.15 provided evidence that two kinds of amino groups participate in carbamate formation. From the equilibrium constants computed for the two species they could be identified as alpha- and epsilon-amino groups. On the basis of a protein molecular weight of 69.000. 0.6 alpha-amino groups/molecule with pKz=7.0 and pKc=4.2, and 5.9 epsilon-amino groups/molecule with pKz=9.0 and pKc=4.3 contribute to carbamate formation. The velocity constant ka was estimated to be 4,950 M1 S1 for the alpha-amino groups and 13,800 M1 S1 for the epsilon-amino groups. Under physiological conditions (pCO2=40 Torr. pH=7.4). The concentration of carbamate in plasma is 0.6 mM and the half-time of carbamate formation is 0.05 s. In extracts prepared from sheep brain at 37 degrees pH=7 and pCO2=35 Torr. the carbamate formation was estimated to be 0.8 mM. With pCO2=70 Torr and the same pH and temperature the carbamate concentration in muscle approximates 0.3 mM and increases to 7 mM as pH rises to 8. It is concluded that, as in plasma, a considerable number of epsilon-amino groups appear to be available for carbamate formation in these tissues.  相似文献   

7.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Thermal stabilities of chicken, grey lag goose (Anser anser), turkey as avian hemoglobins (Hbs); and human, bovine, sheep and horse as mammalian Hbs in hemolysate form were investigated and compared with oxygen affinities taken from literature. The thermal stability was obtained from thermal profiles using temperature scanning spectrophotometry. The buffer conditions were 50 mM Tris, pH 7.2, and 1 mM EDTA. The average of the inverse temperature transitions, average hydrophobicity, total van der Waals volume, partial molal volume and hydration potential were calculated by computational methods. The hemolysed avian Hbs have a lower oxygen affinity, higher thermal stability and higher self association than the mammalian Hbs. These observations are based on amino-acid composition, influence of ionic effectors, and the presence of Hb D in several avian Hbs. The results indicate that the avian Hbs have a more tense (T) conformation than the mammalian Hbs.  相似文献   

9.
1. Arterial blood was sampled at 15 min-intervals in European hamsters Cricetus cricetus fitted with indwelling catheters, from deep hibernation to full arousal. Temperature-corrected pH and PCO2, respectively pH* and P*CO2, were directly measured at 37 degrees C. 2. Deep hibernation corresponded to a respiratory acidosis: pH* = 7.01 +/- 0.01 (mean +/- SE), P*CO2 = 160 +/- 4 Torr (n = 9 animals). 3. Three periods could be distinguished in the arousal: (i) a period of hyperventilation (28 +/- 5 min), in which P*CO2 was reduced to 79 +/- 4 Torr, while cheek pouch temperature increased only by 0.9 +/- 0.2 degrees C; (ii) a period of metabolic acidification by lactate accumulation (84 +/- 6 min), corresponding to the period of peak thermogenesis; (iii) a progressive return to euthermic conditions (104 +/- 10 min), by simultaneous respiratory and metabolic alkalinization. 4. Over 60% of the blood CO2 stores accumulated at the beginning of the hibernation bout were released by hyperventilation during the first period, prior to the full development of thermogenesis. This is in agreement with the hypothesis of an inhibitory role of the respiratory acidosis in hibernation.  相似文献   

10.
The rate constants and delta H degrees for the non-cooperative dimeric Busycon myoglobin are: oxygen, k' = 4.75 X 10(7) M-1 sec-1, k = 71 sec-1, and CO, l'= 3.46 X 10(5) M-1 sec-1, l = 0.0052 sec-1 at 20 degrees C, pH 7, delta H degrees = -3 kcal/mol for O2 and CO.2. Log-log plots of k vs K for oxygen and of l' vs L for CO binding for numerous non-cooperative hemoglobins and myoglobins point to a large steric influence of the protein on heme ligation reactions. Many of the proteins behave as "R" state for one ligand, but "T" for the other.  相似文献   

11.
Rate of CO uptake by canine erythrocytes as a function of PO2   总被引:1,自引:0,他引:1  
We used a continuous-flow rapid-mixing apparatus with spectroscopic analysis to measure the rate of CO uptake by canine erythrocytes at 37 degrees C at five different PO2 values from 0 to 553 Torr. Fresh blood from five different dogs was used for the experiments. PCO approximated 80 Torr. Corrections for the lower capillary PCO during a measurement of the diffusing capacity of lung CO, as made by Roughton and Forster in 1957 (J. Appl. Physiol. 11: 290-302, 1957), were not used. The regression equation for 1/theta, where theta is milliliters of CO combining for each milliliter of whole blood (capacity 0.2 ml/ml) per minute for a PCO of 1 Torr was 1/theta = 1.45 +/- 0.0042 PO2. This equation is very similar to that for human erythrocytes under the same conditions.  相似文献   

12.
The heterodont clam Calyptogena kaikoi, living in the cold-seep area at a depth of 3761 m of the Nankai Trough, Japan, has abundant hemoglobins and myoglobins in erythrocytes and adductor muscle, respectively. Two types of hemoglobins (Hb I and Hb II) were isolated, and the complete amino acid sequences of Hb I (145 residues) and Hb II (137 residues) were obtained with combination of cDNA and protein sequencing. The amino acid sequences of C. kaikoi Hbs I and II differed from homologous chains of the congeneric clam Calyptogena soyoae in eight and five positions, respectively. The distal (E7) His, one of the functionally important residues in hemoglobin and myoglobin, was replaced by Gln in hemoglobins of C. kaikoi. A phylogenetic analysis of clam hemoglobins indicates that the evolutionary rate of Calyptogena hemoglobins is rather faster than those of other clams, suggesting that the mutation rate might be accelerated in the deep-sea animals around the areas of cold seeps or hydrothermal vents. On the other hand, it was found unexpectedly that two myoglobins Mbs I and II, isolated from the red adductor muscle, are identical in amino acid sequence Hbs I and II, respectively. Thus it was assumed that genes for Hbs I and II are also expressed in the muscle of C. kaikoi in substitution for myoglobin gene. This suggests that the major physiological role of globins in C. kaikoi is storage of oxygen under the low oxygen conditions, rather than circulating of oxygen.  相似文献   

13.
Growth of the obligately chemolithotrophic Thiomicrospira sp. strain L-12, isolated from a hydrothermal vent at a depth of 2,550 m in the Galapagos Rift region, was optimal at pH 8 and required 200 mM Na+ and divalent ions (Ca2+ and Mg2+). The organism was microaerophilic and tolerated 300 microM sulfide without a decrease in the rate of CO2 incorporation. Growth and CO2 incorporation occurred within the temperature range of 10 to 35 degrees C, with both optimal at 25 degrees C. At the in situ pressure of 250 atm. the rate of CO2 incorporation was reduced by 25% relative to that measured at 1 atm: it was entirely suppressed at 500 atm. The results of this physiological characterization suggest that Thiomicrospira sp. strain L-12 can be an active autotroph in the hydrothermal environment.  相似文献   

14.
Pirow R  Hellmann N  Weber RE 《The FEBS journal》2007,274(13):3374-3391
Branchiopod crustaceans are endowed with extracellular, high-molecular-mass hemoglobins (Hbs), the functional and allosteric properties of which have largely remained obscure. The Hb of the phylogenetically ancient Triops cancriformis (Notostraca) revealed moderate oxygen affinity, cooperativity and pH dependence (Bohr effect) coefficients: P(50) = 13.3 mmHg, n(50) = 2.3, and Phi = -0.18, at 20 degrees C and pH 7.44 in Tris buffer. The in vivo hemolymph pH was 7.52. Bivalent cations increased oxygen affinity, Mg(2+) exerting a greater effect than Ca(2+). Analysis of cooperative oxygen binding in terms of the nested Monod-Wyman-Changeux (MWC) model revealed an allosteric unit of four oxygen-binding sites and functional coupling of two to three allosteric units. The predicted 2 x 4 and 3 x 4 nested structures are in accord with stoichiometric models of the quarternary structure. The allosteric control mechanism of protons comprises a left shift of the upper asymptote of extended Hill plots which is ascribable to the displacement of the equilibrium between (at least) two high-affinity (relaxed) states, similar to that found in extracellular annelid and pulmonate molluscan Hbs. Remarkably, Mg(2+) ions increased oxygen affinity solely by displacing the equilibrium between the tense and relaxed conformations towards the relaxed states, which accords with the original MWC concept, but appears to be unique among Hbs. This effect is distinctly different from those of ionic effectors (bivalent cations, protons and organic phosphates) on annelid, pulmonate and vertebrate Hbs, which involve changes in the oxygen affinity of the tense and/or relaxed conformations.  相似文献   

15.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

16.
17.
Peroxynitrite, a biological oxidant formed from the reaction of nitric oxide with the superoxide radical, is associated with many pathologies, including neurodegenerative diseases, such as multiple sclerosis (MS). Gout (hyperuricemic) and MS are almost mutually exclusive, and uric acid has therapeutic effects in mice with experimental allergic encephalomyelitis, an animal disease that models MS. This evidence suggests that uric acid may scavenge peroxynitrite and/or peroxynitrite-derived reactive species. Therefore, we studied the kinetics of the reactions of peroxynitrite with uric acid from pH 6.9 to 8.0. The data indicate that peroxynitrous acid (HOONO) reacts with the uric acid monoanion with k = 155 M(-1) s(-1) (T = 37 degrees C, pH 7.4) giving a pseudo-first-order rate constant in blood plasma k(U(rate))(/plasma) = 0.05 s(-1) (T = 37 degrees C, pH 7.4; assuming [uric acid](plasma) = 0.3 mM). Among the biological molecules in human plasma whose rates of reaction with peroxynitrite have been reported, CO(2) is one of the fastest with a pseudo-first-order rate constant k(CO(2))(/plasma) = 46 s(-1) (T = 37 degrees C, pH 7.4; assuming [CO(2)](plasma) = 1 mM). Thus peroxynitrite reacts with CO(2) in human blood plasma nearly 920 times faster than with uric acid. Therefore, uric acid does not directly scavenge peroxynitrite because uric acid can not compete for peroxynitrite with CO(2). The therapeutic effects of uric acid may be related to the scavenging of the radicals CO(*-)(3) and NO(*)(2) that are formed from the reaction of peroxynitrite with CO(2). We suggest that trapping secondary radicals that result from the fast reaction of peroxynitrite with CO(2) may represent a new and viable approach for ameliorating the adverse effects associated with peroxynitrite in many diseases.  相似文献   

18.
The proton Bohr factor (phi H = alpha log PO2/alpha pH), the carbamate Bohr factor (phi C = alpha log PO2/alpha log PCO2), the total Bohr factor (phi HC = d log PO2/dpH[base excess) and the CO2 buffer factor (d log PCO2/dpH) were determined in the blood of 12 healthy donors over the whole O2 saturation (SO2) range. All three Bohr factors proved to be dependent on SO2, although to a lesser extent than reported in some of the recent literature. At SO2 = 50% and 37 degrees C, we found phi H = -0.428 +/- 0.010 (SE), phi C = 0.054 +/- 0.006, and phi HC = -0.488 +/- 0.007. The values obtained for phi H, phi C, and d log PCO2/dpH were used to calculate phi HC. Calculated and measured values of phi HC proved to be in good agreement. In an additional series of 12 specimens of human blood we determined the influence of PCO2 on phi H and the influence of pH on phi C. At SO2 = 50%, phi H varied from -0.49 +/- 0.009 at PCO2 = 15 Torr to -0.31 +/- 0.010 at PCO2 = 105 Torr and phi C from 0.157 +/- 0.015 at pH = 7.80 to 0.006 +/- 0.009 at pH = 7.00. When on the basis of these data a second-order term is taken into account, a still slightly better agreement between measured and calculated values of phi HC can be attained.  相似文献   

19.
The multiple hemoglobins (Hbs) of Chironomus thummi show distinct and significant ontogenetic changes during development from the third instar through the fourth instar and metamorphosis into the pupa. A total of nine Hbs are resolved by 12.7% acrylamide gel electrophoresis (pH 8.65). Hbs 2 and 3, which are stage specific for the fourth instar, are first detected on the fourth day of this stage by electrophoresis and immunoprecipitation. Hb 4 is the predominant Hb species in the early and middle fourth instar, but during the late fourth instar and prepupa, Hb 1 predominates. The concentrations of Hbs 5–9 remain relatively constant in middle instars and decrease during later development. The Hb content of larval hemolymph exhibits changes that coincide with developmental stages; molting is characterized by low Hb content, whereas, the hemolymph of intermolt animals contains relatively high levels of Hbs. Treatment of fourth instars with a juvenile hormone analog, Altosid, prolongs this stage and inhibits the progress of normal development resulting in the formation of larval-pupal intermediates. Altosid also appears specifically to inhibit the accumulation of soluble hemolymph proteins related to pupation and metamorphosis, without affecting the concentration of Hb. Most significantly, it induces the precocious appearance of Hbs 2 and 3, which remain elevated above control levels in the late larval and prepupal stages. The present results strongly suggest that Altosid stimulates the appearance and accumulation of larval-specific proteins in vivo, while it inhibits the appearance of pupation-related proteins.  相似文献   

20.
Cyanagraea praedator (Crustacea: Decapoda: Brachyura) is an endemic species of the East Pacific Rise hydrothermal vents, living in the upper part of black smoker chimneys. Because we were seeking species that have made respiratory adaptations to the hydrothermal environment, we looked at Cyanograea hemocyanin (Hc) and determined its quaternary structure and the oxygen-binding properties in relation to temperature, pH, and lactate. C. praedator Hc is composed of dodecamers and hexamers, with dodecamers formed by the perpendicular association of two hexamers. The composition of these polymers was determined by electrophoresis and, for the first time, by electrospray mass spectrometry. Dodecamers and hexamers are composed of six subunits common to the two forms, with molecular mass ranging from 75,008 Da to 75,534 Da. In addition, we found two dodecamer-specific subunits, at 75,419 Da and 75,629 Da. The native hemocyanin possesses a high oxygen affinity (P(50) varies between 4 and 10 Torr at pH 7.5, 15 degrees C) and a large Bohr coefficient (Delta log P(50)/DeltapH approximately -1.8). Oxygen affinity is not affected by lactate or, surprisingly, temperature between 5 degrees C and 35 degrees C (DeltaH = 1.16 kJ/mol(1) 5-35 degrees C). Dialysis of native hemolymph elicited a significant increase in Hc-O(2) affinity (DeltaP(50) = 2.5 Torr at pH 7.5), an effect opposite the usual trend observed for crustacean hemocyanins. In this article these functional properties are interpreted in relation to characteristics of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号