首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) catalyses the interconversion of active corticosterone and inert 11-dehydrocorticosterone. Short-term glucocorticoid excess upregulates 11β-HSD-1 in liver and hippocampus leading to suggestions that 11β-HSD-1 ameliorates the deleterious effects of glucocorticoid excess by its 11β-dehydrogenase activity. However the predominant activity of 11β-HSD-1 in vivo is 11β-reduction, thus generating active glucocorticoid. We have re-examined the time-course of glucocorticoid regulation of 11β-HSD-1 in the liver, hippocampus and kidney of adult male rats in vivo.Sham operation markedly reduced 11β-HSD-1 mRNA expression in all tissues, and reduced 11β-HSD bioactivity in liver and hippocampus when compared to untouched controls. Adrenalectomy reduced 11β-HSD-1 expression in all tissues in the short-term (7 days), followed by subsequent recovery of enzyme activity by 21 days in liver and hippocampus. Dexamethasone replacement of adrenalectomised rats attenuated the initial decrease in hepatic 11β-HSD-1 activity, but by 21 days dexamethasone reduced activity compared to control levels.Thus glucocorticoids regulate 11β-HSD-1 in a complex tissue- and temporal-specific manner. This pattern of regulation suggests glucocorticoids repress 11β-HSD-1 at least in the liver, a pattern of regulation more consistent with the evidence that 11β-HSD-1 is an 11β-reductase in vivo. Operational stress per se down-regulates 11β-HSD-1 which has implications for interpretation and design of in vivo studies of 11β-HSD-1.  相似文献   

2.
Local tissue concentrations of glucocorticoids are modulated by the enzyme 11β-hydroxysteroid dehydrogenase which interconverts cortisol and the inactive glucocorticoid cortisone in man, and corticosterone and 11-dehydrocorticosterone in rodents. The type I isoform (11β-HSD1) is a bidirectional enzyme but acts predominantly as a oxidoreductase to form the active glucocorticoids cortisol or corticosterone, while the type II enzyme (11β-HSD2) acts unidirectionally producing inactive 11-keto metabolites. There are no known clinical conditions associated with 11β-HSD1 deficiency, but gene deletion experiments in the mouse indicate that this enzyme is important both for the maintenance of normal serum glucocorticoid levels, and in the activation of key hepatic gluconeogenic enzymes. Other important sites of action include omental fat, the ovary, brain and vasculature. Congenital defects in the 11β-HSD2 enzyme have been shown to account for the syndrome of apparent mineralocorticoid excess (AME), a low renin severe form of hypertension resulting from the overstimulation of the non-selective mineralocorticoid receptor by cortisol in the distal tubule of the kidney. Inactivation of the 11β-HSD2 gene in mice results in a phenotype with similar features to AME. In addition, these mice show high neonatal mortality associated with marked colonic distention, and remarkable hypertrophy and hyperplasia of the distal tubule epithelia. 11β-HSD2 also plays an important role in decreasing the exposure of the fetus to the high levels of maternal glucocorticoids. Recent work suggests a role for 11β-HSD2 in non-mineralocorticoid target tissues where it would modulate glucocorticoid access to the glucocorticoid receptor, in invasive breast cancer and as a mechanism providing ligand for the putative 11-dehydrocorticosterone receptor. While previous homologies between members of the SCAD superfamily have been of the order of 20–30% phylogenetic analysis of a new branch of retinol dehydrogenases indicates identities of >60% and overlapping substrate specificities. The availability of crystal structures of family members has allowed the mapping of conserved 11β-HSD domains A–D to a cleft in the protein structure (cofactor binding domain), two parallel β-sheets, and an -helix (active site), respectively.  相似文献   

3.
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others.  相似文献   

4.
11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) is an enzyme that interconverts active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inactive 11-oxo derivatives (cortisone, 11-dehydrocorticosterone). Although bidirectional, it is considered to operate in vivo as an 11-reductase that regenerates active glucocorticoids and thus amplifies their local activity in mammals. Here we report the cloning, characterization and tissue distribution of chicken 11HSD1 (ch11HSD1). Its cDNA predicts a protein of 300 amino acids that share 51-56% sequence identity with known mammalian 11HSD1 proteins, while in contrast to most mammals, ch11HSD1 contains only one N-linked glycosylation site. Analysis of the tissue distribution pattern by RT-PCR revealed that ch11HSD1 is expressed in a large variety of tissues, with high expression in the liver, kidney and intestine, and weak in the gonads, brain and heart. 11-Reductase activity has been found in the liver, kidney, intestine and gonads with low or almost zero activity in the brain and heart. These results provide evidence for a role of 11HSD1 as a tissue-specific regulator of glucocorticoid action in non-mammalian vertebrates and may serve as a suitable model for further analysis of 11HSD1 evolution in vertebrates.  相似文献   

5.
3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented.  相似文献   

6.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.  相似文献   

7.
Licorice-derivatives such as glycyrrhizic acid (GA) competitively inhibit 11β-hydroxysteroid dehydrogenase(11β-HSD) type 2 (11-HSD2) enzymatic activity, and chronic clinical use often results in pseudoaldosteronism. Since the effect of GA on 11-HSD2 expression remains unknown, we undertook in vivo and in vitro studies. Male Wistar rats were given 30, 60 or 120 mg/kg of GA twice a day for 2 weeks. Plasma corticosterone was decreased in those given the 120 mg dose, while urinary corticosterone excretion was increased in those given the 30 and 60 mg doses but decreased in those given 120 mg GA. NAD+-dependent dehydrogenase activity in kidney microsomal fraction was decreased in animals receiving doses of 60 and 120 mg GA. The 11-HSD2 protein and mRNA levels were decreased in those given 120 mg GA. In contrast, in vitro studies using mouse kidney M1 cells revealed that 24 h treatment with glycyrrhetinic acid did not affect the 11-HSD2 mRNA expression levels. Thus, in addition to its role as a competitive inhibitor of 11-HSD2, the chronic high dose of GA suppresses mRNA and protein expression of 11-HSD2 possibly via indirect mechanisms. These effects may explain the prolonged symptoms after cessation of GA administration in some pseudoaldosteronism patients.  相似文献   

8.
The inhibition of 11βhydroxysteroid dehydrogenase 1 (11βHSD1), an enzyme that catalyzes the conversion of inactive cortisone to active cortisol, is an attractive target to treat diabetes by suppressing hepatic gluconeogenesis. To test this hypothesis, we developed a novel glucocorticoid-induced diabetic KK mouse model and used 11βHSD1 antisense oligonucleotide (ASO) as an inhibitory tool. KK mice were treated with 25 or 50 mg/kg/day of 11βHSD1 ASO for 28 days. On day 25, cortisone pellets were surgically implanted to induce diabetes. In the ASO-treated mice, plasma blood glucose levels were significantly reduced by up to 54%. In parallel, cortisol and other diabetes endpoints were also significantly reduced. Hepatic 11βHSD1 mRNA was suppressed by up to 84% with a concomitant respective decrease of up to 49% in the expression of PEPCK. The results suggest that inhibition of 11βHSD1 activity reduces the availability of cortisol to activate the glucocorticoid receptor, down regulates gluconeogenesis and thus reduces plasma glucose levels in cortisone-induced diabetic KK mice.  相似文献   

9.
10.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC50 values in the low micromolar range.  相似文献   

11.
Objectives: In ideopathic obesity, there is evidence that enhanced cortisol regeneration within abdominal subcutaneous adipose tissue may contribute to adiposity and metabolic disease. Whether the cortisol regenerating enzyme, 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1), or glucocorticoid receptor (GRα) levels are altered in other adipose depots remains uncertain. Our objective was to determine the association between 11βHSD1 and GRα mRNA levels in four distinct adipose depots and measures of obesity and the metabolic syndrome. Research Methods and Procedures: Adipose tissue biopsies were collected from subcutaneous (abdominal, thigh, gluteal) and intra‐abdominal (omental) adipose depots from 21 women. 11βHSD1 and GRα mRNA levels were measured by real‐time polymerase chain reaction. Body composition, fat distribution, fat cell size, and blood lipid, glucose, and insulin levels were measured. Results: 11βHSD1 mRNA was highest in abdominal subcutaneous (p < 0.001) and omental (p < 0.001) depots and was positively correlated with BMI and visceral adiposity in all depots. Omental 11βHSD1 correlated with percent body fat (R = 0.462, p < 0.05), fat cell size (R = 0.72, p < 0.001), and plasma triglycerides (R = 0.46, p < 0.05). Conversely, GRα mRNA was highest in omental fat (p < 0.001). GRα mRNA was negatively correlated with BMI in the abdominal subcutaneous (R = ?0.589, p < 0.05) and omental depots (R = ?0.627, p < 0.05). Omental GRα mRNA was inversely associated with visceral adiposity (R = ?0.507, p < 0.05), fat cell size (R = ?0.52, p < 0.01), and triglycerides (R = ?0.50, p < 0.05). Discussion: Obesity was associated with elevated 11βHSD1 mRNA in all adipose compartments. GRα mRNA is reduced in the omental depot with obesity. The novel correlation of 11βHSD1 with omental fat cell size, independent of obesity, suggests that intracellular cortisol regeneration is a strong predictor of hypertrophy in the omentum.  相似文献   

12.
11beta-Hydroxysteroid dehydrogenase type 1 is a homodimer where the carboxyl terminus of one subunit covers the active site of the dimer partner. Based on the crystal structure with CHAPS, the carboxyl terminal tyrosine 280 (Y280) has been postulated to interact with the substrate/inhibitor at the binding pocket of the dimer partner. However, the co-crystal structure with carbenoxolone argues against this role. To clarify and reconcile these findings, here we report our mutagenesis data and demonstrate that Y280 is not involved in substrate binding but rather plays a selective role in inhibitor binding. The involvement of Y280 in inhibitor binding depends on the inhibitor chemical structure. While Y280 is not involved in the binding of carbenoxolone, it is critical for the binding of glycyrrhetinic acid.  相似文献   

13.
14.
15.
The dehydroepiandrosterone (DHEA) 7alpha-hydroxylation in humans takes place in the liver, skin, and brain. These organs are targets for the glucocorticoid hormones where 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisone through its reduction into cortisol. The putative interference of 7alpha-hydroxy-DHEA with the 11beta-HSD1-catalyzed reduction of cortisone into cortisol has been confirmed in preliminary works with human liver tissue preparations of the enzyme demonstrating the transformation of 7alpha-hydroxy-DHEA into 7-oxo-DHEA and 7beta-hydroxy-DHEA. However, the large production of 7beta-hydroxy-DHEA could not be explained satisfactorily. Therefore our objective was to study the role in the metabolism of oxygenated DHEA by recombinant human 11beta-HSD1 expressed in yeast. The 7alpha- and 7beta-hydroxy-DHEA were each oxidized into 7-oxo-DHEA with quite dissimilar K(M) (70 and 9.5 microM, respectively) but at equivalent V(max). In contrast, the 11beta-HSD1-mediated reduction of 7-oxo-DHEA led to the production of both 7alpha- and 7beta-hydroxy-DHEA with equivalent K(M) (1.1 microM) but with a 7beta-hydroxy-DHEA production characterized by a significantly greater V(max). The 7alpha-hydroxy-DHEA produced by the cytochrome CYP7B1 in tissues may exert anti-glucocorticoid effects through interference with the 11beta-HSD1-mediated cortisone reduction.  相似文献   

16.
Several epidemiological and animal studies have shown that the offsprings of diabetic mothers have higher incidences of glucose intolerance, obesity, insulin resistance, and hypertension in later life. It is well known that glucocorticoid metabolism plays a crucial role on several adult disease originated from fetal environment. The aim of this study was to investigate the relation between diabetic pregnancy and glucocorticoid metabolism of both mother and fetus, focusing on the 11 beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2. A model of diabetic pregnancy was made by intravenous injection of streptozotocin (35 mg/kg body weight) to Sprague-Dawley rats, and blood and tissue samples were collected on day 20 of pregnancy. In the diabetic group, expression of 11 beta-hydroxysteroid dehydrogenase type 2 in placentas and fetal kidneys was decreased remarkably. Corticosterone levels of diabetic mothers were lower than those of control rats. Despite the differences in maternal corticosterone levels, fetal levels of corticosterone did not differ between the groups. Our results lend support to the concept that diabetic pregnancy imprints glucocorticoid regulation in these fetuses, which may contribute to their increased incidence of higher blood pressure as adults.  相似文献   

17.
Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells.  相似文献   

18.
Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11beta-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11beta-HSD1, as 11beta-HSD1 mRNA, but not 11beta-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1(-/-) macrophages, and carbenoxolone, an 11beta-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1(-/-) mice. These data point to an early role for 11beta-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.  相似文献   

19.
Following extensive suprasellar operations for excision of hypothalamic tumors, some patients develop morbid obesity despite receiving replacement doses of glucocorticoids. Urine analysis of cortisol and cortisone metabolites show that 11-OH/11-oxo ratios are significantly higher in patients with hypothalamic obesity, indicating enhanced 11beta-HSD1 activity. This correlates with the visceral-to-subcutaneous fat ratio. The consequence of increased 11beta-HSD1 activity and a shift of the steroid inter-conversion towards cortisol may contribute to the effects of the latter in adipose tissue. The message from the hypothalamus to adipocyte 11beta-HSD-1 involves hormones, the sympathetic nervous system and cytokines. CRH and ACTH downregulate 11beta-HSD-1 activity and induce lipolysis. Tumor necrosis factor-alpha and interleukin-1beta upregulate 11beta-HSD-1 expression and activity, while enhancing lipolysis. The sympathetic nervous system exerts its effects through beta-adrenergic upregulation and alpha-adrenergic downregulation of 11beta-HSD-1 activity. Inhibition of 11beta-HSD-1 suppresses preadipocyte differentiation into mature adipocytes, and may provide a therapeutic tool.  相似文献   

20.
Population-based studies have shown that the offspring of diabetic mothers have an increased risk of developing obesity, insulin resistance, type 2 diabetes and hypertension in later life. To investigate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers, we focused on the tissue-specific glucocorticoid regulation by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and studied offspring born to streptozotocin-induced diabetic rats. The body weights of newborn rats from diabetic mothers were heavier than those from control mothers. Offspring born to diabetic mothers demonstrated insulin resistance and mild glucose intolerance after glucose loading at 10 weeks and showed significantly increased 11beta-HSD1 mRNA and enzyme activity in adipose tissue at 12 weeks of age without obvious obesity. Hepatic 11beta-HSD1 mRNA was also elevated. We propose that the 11beta-HSD1 in adipose tissue and liver may play a key role in the development of metabolic syndrome in the offspring of diabetic mothers. Tissue-specific glucocorticoid dysregulation provides a candidate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers. Therefore early analyses before apparent obesity are needed to elucidate the molecular mechanisms that may be programmed during the fetal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号