首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

2.
The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS) of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes.  相似文献   

3.
Force-response considerations in ciliary mechanosensation   总被引:1,自引:0,他引:1  
Considerable experimental evidence indicates that the primary, nonmotile cilium is a mechanosensory organelle in several epithelial cell types. As the relationship between cellular responses and nature and magnitude of applied forces is not well understood, we have investigated the effects of exposure of monolayers of renal collecting duct chief cells to orbital shaking and quantified the forces incident on cilia. An exposure of 24 h of these cells to orbital shaking resulted in a decrease of amiloride-sensitive sodium current by approximately 60% and ciliary length by approximately 30%. The sensitivity of the sodium current to shaking was dependent on intact cilia. The drag force on cilia due to induced fluid flow during orbital shaking was estimated at maximally 5.2x10(-3) pN at 2 Hz, approximately 4 times that of thermal noise. The major structural feature of cilia contributing to their sensitivity appears to be ciliary length. As more than half of the total drag force is exerted on the ciliary cap, one function of the slender stalk may be to expose the cap to greater drag force. Regardless, the findings indicate that the cilium is a mechanosensory organelle with a sensitivity much lower than previously recognized.  相似文献   

4.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

5.
Soluble levels of cytosolic tubulin regulate ciliary length control   总被引:2,自引:0,他引:2  
The primary cilium is an evolutionarily conserved dynamic organelle important for regulating numerous signaling pathways, and, as such, mutations disrupting ciliogenesis result in a variety of developmental abnormalities and postnatal disorders. The length of the cilium is regulated by the cell through largely unknown mechanisms. Normal cilia length is important, as either shortened or elongated cilia have been associated with disease and developmental defects. Here we explore the importance of cytoskeletal dynamics in regulating cilia length. Using pharmacological approaches in different cell types, we demonstrate that actin depolymerization or stabilization and protein kinase A activation result in a rapid elongation of the primary cilium. The effects of pharmacological agents on cilia length are associated with a subsequent increase in soluble tubulin levels and can be impaired by depletion of soluble tubulin with taxol. In addition, subtle nocodazole treatment was able to induce ciliogenesis under conditions in which cilia are not normally formed and also increases cilia length on cells that have already established cilia. Together these data indicate that cilia length can be regulated through changes in either the actin or microtubule network and implicate a possible role for soluble tubulin levels in cilia length control.  相似文献   

6.
Arl13b, a ciliary protein within the ADP-ribosylation factor family and Ras superfamily of GTPases, is required for ciliary structure but has poorly defined ciliary functions. In this paper, we further characterize the role of Arl13b in cilia by examining mutant cilia in vitro and determining the localization and dynamics of Arl13b within the cilium. Previously, we showed that mice lacking Arl13b have abnormal Sonic hedgehog (Shh) signaling; in this study, we show the dynamics of Shh signaling component localization to the cilium are disrupted in the absence of Arl13b. Significantly, we found Smoothened (Smo) is enriched in Arl13b-null cilia regardless of Shh pathway stimulation, indicating Arl13b regulates the ciliary entry of Smo. Furthermore, our analysis defines a role for Arl13b in regulating the distribution of Smo within the cilium. These results suggest that abnormal Shh signaling in Arl13b mutant embryos may result from defects in protein localization and distribution within the cilium.  相似文献   

7.
NDP kinase moves into developing primary cilia   总被引:1,自引:0,他引:1  
Inmunofluorescence staining of murine NIH3T3 fibroblasts grown at high density shows that conventional nucleoside diphosphate (NDP) kinases A and B localize to a sensory organelle, the primary cilium. Similar results are obtained with Xenopus A6 kidney epithelial cells, suggesting that NDP kinases are a universal component of the primary cilium. The translocation of NDP kinase into primary cilia depends on size, taking place only when cilia reach a critical length of 5-6 microm. In mature cilia, NDP kinases are distributed along the ciliary shaft in a punctate pattern that is distinct from the continuous staining observed with acetylated alpha-tubulin, a ciliary marker and axonemal component. Isolation of a fraction enriched in primary cilia from A6 cells led to the finding that ciliary NDP kinase is enzymatically active, and is associated with the membrane and the matrix, but not the axoneme. In contrast, acetylated alpha-tubulin is found in the axoneme and, to a lesser extent, in the membrane. Based on the tightly regulated translocation process and the subciliary distribution pattern of NDP kinase, we propose that it plays a role in the elongation and maintenance of primary cilia by its ability to regenerate the GTP utilized by ciliary microtubule turnover and transmembrane signaling.  相似文献   

8.
Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established ciliary hypothesis states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1) the primary cilium is not a simple cantilevered beam; 2) the base of the cilium may be modeled as a nonlinear rotatory spring, with the linear spring constant k of the cilium base calculated to be (4.6 ± 0.62) × 10−12 N/rad and nonlinear spring constant α to be (−1 ± 0.34) × 10−10 N/rad2; and 3) the ciliary base may be an essential regulator of mechanotransduction signaling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia—anatomically similar structures with very different physiological functions.  相似文献   

9.
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.  相似文献   

10.
In the past decade, cilia have been found to play important roles in renal cystogenesis. Many genes, such as PKD1 and PKD2 which, when mutated, cause autosomal dominant polycystic kidney disease (ADPKD), have been found to localize to primary cilia. The cilium functions as a sensor to transmit extracellular signals into the cell. Abnormal cilia structure and function are associated with the development of polyscystic kidney disease (PKD). Cilia assembly includes centriole migration to the apical surface of the cell, ciliary vesicle docking and fusion with the cell membrane at the intended site of cilium outgrowth, and microtubule growth from the basal body. This review summarizes the most recent advances in cilia and PKD research, with special emphasis on the mechanisms of cytoplasmic and intraciliary protein transport during ciliogenesis. Birth Defects Research (Part C) 102:174–185, 2014 . © 2014 Wiley Periodicals, Inc .  相似文献   

11.
12.
One of the most widespread cellular organelles in nature is cilium, which is found in many unicellular and multicellular organisms. Formerly thought to be a mostly vestigial organelle, the cilium has been discovered in the past several decades to play critical motile and sensory roles involved in normal organogenesis during development. The role of cilia has also been implicated in an ever increasing array of seemingly unrelated human diseases, including blindness, kidney cysts, neural tube defects and obesity. In this article we review some of the recent developments in research on cilia, and how defects in ciliogenesis and function can give rise to developmental disorders and disease.  相似文献   

13.
《Organogenesis》2013,9(1):62-68
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.  相似文献   

14.
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes in hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150% to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70%. Interestingly, FEA results indicated that primary cilium length was not directly related to ciliary membrane strain. Rather, it appears that cilium orientation may be more important than cilium length in determining sensitivity of hASC to tensile strain. This is the first study to model the effects of tensile strain on the primary cilium and provides newfound insight into the potential role of the primary cilium as a mechanosensor, particularly in tensile strain and potentially a multitude of other mechanical stimuli beyond fluid shear.  相似文献   

15.
The paralabial organelle of the rumen ciliate Ophryoscolex purkinjei, located on the ventral side of the ciliophor, is a highly specialized part of the somatic cortex. It consists of alternating rows of short modified cilia and thin pellicular folds which form a ridge-like structure. The central "top kinety" is composed of monokinetids which bear cilia with 9 + 2 axonemes and 2 microns in length. The top kinety is accompanied by a comb-shaped fold on its distal side and by a broad wedge-shaped fold on its proximal side. To both sides there follow two or three lateral kineties made of dikinetids. The anterior kinetosome of each pair bears a clavate cilium, only 0.5-0.7 micron in length and with a 9 + 0 axoneme while the cilium of the posterior kinetosome is even shorter. Lateral folds with numerous microtubules cover these lateral kineties and rows of barren basal bodies. The fine structure of this supposed sensory organelle show a basic pattern in four other ophryoscolecids, and its increasing complexity parallels the suggested phylogenetic line of evolution of these ciliates.  相似文献   

16.
The cilium is a microtubule-based organelle that contains a unique complement of proteins for cell motility and signalling functions. Entry into the ciliary compartment is proposed to be regulated at the base of the cilium. Recent work demonstrated that components of the nuclear import machinery, including the Ran GTPase and importins, regulate ciliary entry. We hypothesized that the ciliary base contains a ciliary pore complex whose molecular nature and selective mechanism are similar to those of the nuclear pore complex. By microinjecting fluorescently labelled dextrans and recombinant proteins of various sizes, we characterize a size-dependent diffusion barrier for the entry of cytoplasmic molecules into primary cilia in mammalian cells. We demonstrate that nucleoporins localize to the base of primary and motile cilia and that microinjection of nucleoporin-function-blocking reagents blocks the ciliary entry of kinesin-2 KIF17 motors. Together, this work demonstrates that the physical and molecular nature of the ciliary pore complex is similar to that of the nuclear pore complex, and further extends functional parallels between nuclear and ciliary import.  相似文献   

17.
18.
Ciliogenesis: building the cell's antenna   总被引:1,自引:0,他引:1  
The cilium is a complex organelle, the assembly of which requires the coordination of motor-driven intraflagellar transport (IFT), membrane trafficking and selective import of cilium-specific proteins through a barrier at the ciliary transition zone. Recent findings provide insights into how cilia assemble and disassemble in synchrony with the cell cycle and how the balance of ciliary assembly and disassembly determines the steady-state ciliary length, with the inherent length-dependence of IFT rendering the ciliary assembly rate a decreasing function of length. As cilia are important in sensing and processing developmental signals and directing the flow of fluids such as mucus, defects in ciliogenesis and length control are likely to underlie a range of cilium-related human diseases.  相似文献   

19.
The planar cell polarity (PCP) pathway controls multiple cellular processes during vertebrate development. Recently the PCP pathway was implicated in ciliogenesis and in ciliary function. The primary cilium is an apically projecting solitary organelle that is generated via polarized intracellular trafficking. Because it acts as a signaling nexus, defects in ciliogenesis or cilial function cause multiple congenital anomalies in vertebrates. Loss of the PCP effector Fuzzy affects PCP signaling and formation of primary cilia; however, the mechanisms underlying these processes are largely unknown. Here we report that Fuzzy localizes to the basal body and ciliary axoneme and is essential for ciliogenesis by delivering Rab8 to the basal body and primary cilium. Fuzzy appears to control subcellular localization of the core PCP protein Dishevelled, recruiting it to Rab8-positive vesicles and to the basal body and cilium. We show that loss of Fuzzy results in inhibition of PCP signaling and hyperactivation of the canonical WNT pathway. We propose a mechanism by which Fuzzy participates in ciliogenesis and affects both canonical WNT and PCP signaling.  相似文献   

20.
The paralabial organelle of the rumen ciliate Ophryoscolex purkinjei , located on the ventral side of the ciliophor, is a highly specialized part of the somatic cortex. It consists of alternating rows of short modified cilia and thin pellicular folds which form a ridge-like structure. The central "top kinety" is composed of monokinetids which bear cilia with 9 + 2 axonemes and 2 μm in length. The top kinety is accompanied by a comb-shaped fold on its distal side and by a broad wedge-shaped fold on its proximal side. To both sides there follow two or three lateral kineties made of dikinetids. The anterior kinetosome of each pair bears a clavate cilium, only 0.5–0.7 μm in length and with a 9 + 0 axoneme while the cilium of the posterior kinetosome is even shorter. Lateral folds with numerous microtubules cover these lateral kineties and rows of barren basal bodies. The fine structure of this supposed sensory organelle show a basic pattern in four other ophryoscolecids, and its increasing complexity parallels the suggested phylogenetic line of evolution of these ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号