首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A highly sensitive and selective amperometric hydrogen peroxide (H(2)O(2)) biosensor based on immobilization of hemoglobin (Hb) at multiwalled carbon nanotubes-zinc oxide (MWCNT/ZnO) composite modified glassy carbon electrode (GCE) is reported. ZnO microsponges were electrochemically grown on MWCNT surface by the simple, cost-effective, green, electrochemical method at room temperature. The MWCNT/ZnO/Hb composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E°') of -0.336V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.26s(-1). The developed biosensor showed a very fast response (>2s) toward H(2)O(2) with good sensitivity, wide linear range, and low detection limit of 0.02μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of MWCNT, and good biocompatibility of ZnO. The fabrication method of this biosensor is simple and effective for determination of H(2)O(2) in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery.  相似文献   

2.
A novel amperometric biosensor, based on electrodeposition of platinum nanoparticles onto multi-walled carbon nanotube (MWNTs) and immobilizing enzyme with chitosan-SiO(2) sol-gel, is presented in this article. MWNTs were cast on the glass carbon (GC) substrate directly. An extra Nafion coating was used to eliminate common interferents such as acetaminophen and ascorbic acids. The morphologies and electrochemical performance of the modified electrodes have been investigated by scanning electron microscopy (SEM) and amperometric methods, respectively. The synergistic action of Pt and MWNTs and the biocompatibility of chitosan-SiO(2) sol-gel made the biosensor have excellent electrocatalytic activity and high stability. The resulting biosensor exhibits good response performance to glucose with a wide linear range from 1 microM to 23 mM and a low detection limit 1 microM. The biosensor also shows a short response time (within 5s), and a high sensitivity (58.9 microAm M(-1)cm(-2)). In addition, effects of pH value, applied potential, rotating rate, electrode construction and electroactive interferents on the amperometric response of the sensor were investigated and discussed in detail.  相似文献   

3.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

4.
Nanostructured polyurethane (PU) synthesized by an emulsion polymerization with narrow size distribution was employed for the first time directly as a novel matrix for enzyme immobilization to develop sensitively amperometric biosensors. When Microperoxidase-11 (MP-11) was selected as a model protein, the resulting hydrogen peroxide (H(2)O(2)) biosensor exhibited improved sensitivity of 29.6μAmM(-1)cm(-2) with quite good response time of (1.3±0.4)s and remarkable limit of detection as low as 10pM (S/N 3) over existing protocols. A linear calibration curve for hydrogen peroxide was obtained up to 1.3μM under the optimized conditions with a relative low calculated Michaelis-Menten constant (K(M)(app)) (1.87±0.05)μM, which indicated the enhanced enzymatic affinity of MP-11 to H(2)O(2) via PU. The possible interferents had negligible effect on the response current and time of the prepared biosensor. Results suggest that the PU nanoparticles (PU-NPs) with good biocompatibility and sufficient interfacial adhesion hold promise as an attractive support material for construction of ultrasensitive amperometric biosensor.  相似文献   

5.
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.  相似文献   

6.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

7.
Pan D  Chen J  Nie L  Tao W  Yao S 《Analytical biochemistry》2004,324(1):115-122
Prussian blue (PB), as a good catalyst for the reduction of hydrogen peroxide, has been combined with nonconducting poly(o-aminophenol) (POAP) film to assemble glucose biosensor. Compared with PB-modified enzymatic biosensor, the biosensor based on glucose oxidase immobilized in POAP film at PB-modified electrode shows much improved stability (78% remains after 30 days) in neutral medium. Additionally, the biosensor, at an applied potential of 0.0 V, exhibits other good characteristics, such as relative low detection limit (0.01 mM), short response time (within 5s), large current density (0.28 mA/cm2), high sensitivity (24 mAM(-1)cm(-2)), and good antiinterferent ability. The apparent activation energy of enzyme-catalyzed reaction and apparent Michaelis-Menten constant are 34.2 KJmol(-1) and 10.5 mM, respectively. In addition, effects of temperature, applied potential used in the determination, pH value of the detection solution, and electroactive interferents on the amperometric response of the sensor were investigated and are discussed.  相似文献   

8.
Cobalt oxyhydroxide, CoOOH, nanosheets were prepared via a surface alkaline treatment of cobalt foil at room temperature without using templates and catalysts. The morphology, chemical composition and structures of the nanosheets were characterized by XRD, FTIR and Raman spectroscopy, FESEM and TEM. These oriented and nanostructured arrays can be used directly as electrodes, thus simplifying the electrode fabrication process, as well as offering advantages such as enhanced electrode-electrolyte contact area, minimum diffusion resistance and direct active material-current collector connection for fast electron transport. The electrode was used as an electrochemical sensor towards non-enzymatic detection of hydrogen peroxide and hydrazine in alkaline solution. The amperometric detection of H(2)O(2) and N(2)H(4) was carried out at low potential (0V and 0.1V). At 0.1V, the amperometric signals are linearly proportional to H(2)O(2) concentration up to 1.6mM (R(2)=0.995), showing a detection limit (S/N=3) of 40μM and a high sensitivity of 99μAmM(-1)cm(-2). For N(2)H(4), the amperometric signals are linearly proportional to concentration up to 1.2mM (R(2)=0.99), showing a detection limit (S/N=3) of 20μM and a high sensitivity of 155μAmM(-1)cm(-2) at 0.1V.  相似文献   

9.
A novel amperometric biosensor for hydrogen peroxide (H(2)O(2)) was developed by entrapping horseradish peroxidase (HRP) in a new ormosil composite doped with ferrocene monocarboxylic acid-bovine serum albumin conjugate and multiwall carbon nanotubes (MWNTs). The ormosil was prepared using 3-(aminopropyl)triethoxysilane and 2-(3,4 epoxycyclohexyl)-ethyltrimethoxy silane as monomers. The encapsulated conjugate showed excellent electrochemistry and acted as an electron transfer mediator. The presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H(2)O(2). The proposed H(2)O(2) biosensor exhibited a linear range of 0.02-4.0 mM with a detection limit of 5.0 microM (S/N = 3) and a K(M)(app) value of 2.0 mM. It could be used for flow injection analysis of hydrogen peroxide with a liner range from 0.02 to 4.5 mM, sensitivity of 0.042 microA/mM and analytical time of 20 s per sample. This biosensor possessed good analytical performance and storage stability.  相似文献   

10.
Cui L  Yin H  Dong J  Fan H  Liu T  Ju P  Ai S 《Biosensors & bioelectronics》2011,26(7):3278-3283
An enzymeless biosensor was explored from Cu-Mg-Al calcined layered double hydroxide (CLDH) modified electrode in this study. The Cu-Mg-Al CLDH greatly promotes the electron transfer between H(2)O(2) and GCE, and it is exemplified toward the non-enzymatic sensing of H(2)O(2). The results indicate that the Cu-Mg-Al CLDH exhibits excellent electrocatalytic property, high sensitivity, good reproducibility, long-term stability, and fast amperometric response toward reduction of H(2)O(2), thus is promising for the future development of man-made mimics of enzyme in H(2)O(2) sensors. This work opens a way to utilize simply Cu-Mg-Al CLDH as an electron mediator to fabricate an efficient H(2)O(2) biosensor, which exhibits great potential applications in varieties of simple, robust, and easy-to-make analytical approaches in the future.  相似文献   

11.
A novel amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) physically immobilized within poly(vinyl alcohol)–multiwalled carbon nanotube (PVA–MWCNT) composite obtained by a freezing–thawing process. It comprises a MWCNT conduit, a PVA binder, and an ADH function. The measurement of ethanol is based on the signal produced by β-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The homogeneity of the resulting biocomposite film was characterized by atomic force microscopy (AFM). The performance of the PVA–MWCNT–ADH biocomposite modified glassy carbon electrode was evaluated using cyclic voltammetry and amperometry in the presence of NADH and in the presence of ethanol. The ethanol content in standard solutions was determined and a sensitivity of 196 nA mM−1, a linear range up to 1.5 mM, and a response time of about 8 s were obtained. These characteristics allowed its application for direct detection of ethanol in alcoholic beverages: beer, red wine, and spirit.  相似文献   

12.
A method is described for the construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase onto iron oxide nanoparticles (Fe(3)O(4)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite electrodeposited onto a gold (Au) electrode. The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 6.0 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3V vs. Ag/AgCl. Linear range, detection limit were 0.1-10μM (lower concentration range) and 10-500μM (higher concentration range), and 0.03μM respectively. The sensor measured total phenolic content in tea leaves extract. The enzyme electrode lost 25% of its initial activity after its 150 uses over a period of 4 months, when stored at 4°C.  相似文献   

13.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

14.
Hemoglobin (Hb) was immobilized on glassy carbon (GC) electrode by a kind of synthetic water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA). A pair of well-defined and quasi-reversible cyclic voltammetric peaks was achieved, which reflected the direct electron-transfer of the Fe(III)/Fe(II) couple of Hb. The formal potential (E degrees'), the apparent coverage (Gamma(*)) and the electron-transfer rate constant (k(s)) were calculated by integrating cyclic voltammograms experimental data. Scanning electron microscopy (SEM) demonstrated the morphology of Hb-PHEA film very different from the Hb and PHEA films. Ultraviolet visible (UV-vis) spectroscopy showed Hb in PHEA film remained its secondary structure similar to the native state. In respect that the immobilized protein remained its biocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)), a kind of mediator-free biosensor for H(2)O(2) could be developed. The apparent Michaelis-Menten constant (K(m)(app)) was estimated to be 18.05 microM. The biosensor exhibited rapid electrochemical response and good stability. Furthermore, uric acid (UA), ascorbic acid (AA) and dopamine (DA) had little interferences with the amperometric signal of H(2)O(2), which provide the perspective of this H(2)O(2) sensor to be used in biological environments.  相似文献   

15.
This paper describes a new amperometric biosensor for glucose monitoring. The biosensor is based on the activity of glucose dehydrogenase (GDH) and diaphorase (DI) co-immobilized with NAD(+) into a carbon nanotube paste (CNTP) electrode modified with an osmium functionalized polymer. This mediator was demonstrated to shuttle the electron transfer between the immobilized diaphorase and the CNTP electrode, thus, showing a good electrocatalytic activity towards NADH oxidation at potentials around +0.2V versus Ag|AgCl, where interfering reactions are less prone to occur. The biosensor exhibits a detection limit of 10 micromol L(-1), linearity up to 8 x 10(-4) mol L(-1), a sensitivity of 13.4 microA cm(-2)mmol(-1)L(-1), a good reproducibility (R.S.D. 2.1%, n=6) and a stability of about 1 week when stored dry at 4 degrees C. Finally, the proposed biosensor was applied for the determination of glucose in different samples of sweet wine and validated with a commercial spectrophotometric enzymatic kit.  相似文献   

16.
Scanning electrochemical microscopy (SECM) with amperometric or potentiometric measuring tips was used to investigate biocatalytic reactions inside the enzyme layer of a biosensor during its operation. The well known glucose oxidase catalyzed oxidation of glucose has been selected for the studies. Local, instantaneous concentration of dissolved oxygen and hydrogen peroxide was studied observing the amperometric current while miniaturized potentiometric tip served for local pH measurements. Liquid enzyme layer immobilized with Cellophane membrane or cross linked polyacrilamide gel membrane containing entrapped enzyme served for biocatalytic media in the SECM imaging. Local maximum of H(2)O(2) and minimum of O(2) profiles were found at approximately 200 microm far from the substrate/enzyme layer boundary. From the experimental findings guidelines to design well functioning biocatalytic sensors could be concluded. The concentration profiles obtained with SECM techniques were compared with the results of simple model calculations carried out with the method of finite changes. Most of earlier made SECM studies dealing with enzyme reactions imaged the electrolyte being in contact with the immobilized enzyme. The data in our investigation, however, were collected inside the working catalytic layer.  相似文献   

17.
A new third-generation biosensor for H(2)O(2) assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/multiwalled carbon nanotubes (MWCNTs) modified gold electrode. The prepared HRP/TTF-TCNQ/MWCNTs/Au electrode was used for the bioelectrocatalytic reduction of H(2)O(2), with a linear range from 0.005 to 1.05mM and a detection limit of 0.5muM for amperometric sensing of H(2)O(2). In addition, a novel method on the basis of electrochemical quartz crystal microbalance (EQCM) measurements was proposed to determine the effective enzymatic specific activity (ESA) of the immobilized HRP for the first time, and the ESA was found to be greater at the TTF-TCNQ/MWCNTs/Au electrode than that at the MWCNTs/Au or TTF-TCNQ/Au electrode, indicating that the TTF-TCNQ/MWCNTs film is a good HRP-immobilization matrix to achieve the direct electron transfer between the enzyme and the electrode.  相似文献   

18.
Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode.  相似文献   

19.
Ferricyanide ions were immobilized on a platinum electrode surface by means of an electrochemically grown polypyrrole film. The entrapped Fe(CN)6(3-)/Fe(CN)6(4-) redox system displayed a high heterogeneous electron transfer rate. The resulting modified electrode was efficient for the ferricyanide-mediated NADH oxidation catalyzed by a diaphorase. The bioelectrochemical interface was applied to the design of a reagentless amperometric D-lactate biosensor. A weakly polarized two polypyrrole-containing Fe(CN)6(3-) modified electrode system was involved without any reference. An enzymatic solution containing D-lactate dehydrogenase, diaphorase and NAD-dextran was further confined on the sensing electrode using a semi-permeable membrane. The sensitivity and the response time of the reagentless biosensor were similar to those of the analogous sensor working with soluble mediator and cofactor, i.e. 25 microA mM(-1) cm(-2) and 120 s, respectively. The other analytical performances were less satisfactorily: the detection limit was 5 x 10 mmol L(-1) and the linearity range was comprised between 0.1 and 0.5 mmol L(-1).  相似文献   

20.
Direct electron transfer of immobilized horseradish peroxidase on gold colloid and its application as a biosensor were investigated by using electrochemical methods. The Au colloids were associated with a cysteamine monolayer on the gold electrode surface. A pair of redox peaks attributed to the direct redox reaction of horseradish peroxidase (HRP) were observed at the HRP/Au colloid/cysteamine-modified electrode in 0.1 M phosphate buffer (pH 7.0). The surface coverage of HRP immobilized on Au colloid was about 7.6 x 10(-10) mol/cm(2). The sensor displayed an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The calibration range of H(2)O(2) was 1. 4 microM to 9.2 mM with good linear relation from 1.4 microM to 2.8 mM. A detection limit of 0.58 microM was estimated at a signal-to-noise ratio of 3. The sensor showed good reproducibility for the determination of H(2)O(2). The variation coefficients were 3. 1 and 3.9% (n = 10) at 46 microM and 2.8 mM H(2)O(2), respectively. The response showed a Michaelis-Menten behavior at higher H(2)O(2) concentrations. The K(app)(M) value for the H(2)O(2) sensor was found to be 2.3 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号