首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1+ as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745–2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1ΔN) or the SAM domain (pob1ΔSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1ΔN, and pob1ΔSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.  相似文献   

2.
Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.  相似文献   

3.
Polarized delivery and incorporation of proteins and lipids to specific domains of the plasma membrane is fundamental to a wide range of biological processes such as neuronal synaptogenesis and epithelial cell polarization. The exocyst complex is specifically localized to sites of active exocytosis and plays essential roles in secretory vesicle targeting and docking at the plasma membrane. Sec3p, a component of the exocyst, is thought to be a spatial landmark for polarized exocytosis. In a search for proteins that regulate the localization of the exocyst in the budding yeast Saccharomyces cerevisiae, we found that certain cdc42 mutants affect the polarized localization of the exocyst proteins. In addition, we found that these mutant cells have a randomized protein secretion pattern on the cell surface. Biochemical experiments indicated that Sec3p directly interacts with Cdc42 in its GTP-bound form. Genetic studies demonstrated synthetically lethal interactions between cdc42 and several exocyst mutants. These results have revealed a role for Cdc42 in exocytosis. We propose that Cdc42 coordinates the vesicle docking machinery and the actin cytoskeleton for polarized secretion.  相似文献   

4.
Formins are actin filament nucleators regulated by Rho-GTPases. In budding yeast, the formins Bni1p and Bnr1p direct the assembly of actin cables, which guide polarized secretion and growth. From the six yeast Rho proteins (Cdc42p and Rho1-5p), we have determined that four participate in the regulation of formin activity. We show that the essential function of Rho3p and Rho4p is to activate the formins Bni1p and Bnr1p, and that activated alleles of either formin are able to bypass the requirement for these Rho proteins. Through a separate signaling pathway, Rho1p is necessary for formin activation at elevated temperatures, acting through protein kinase C (Pkc1p), the major effector for Rho1p signaling to the actin cytoskeleton. Although Pkc1p also activates a MAPK pathway, this pathway does not function in formin activation. Formin-dependent cable assembly does not require Cdc42p, but in the absence of Cdc42p function, cable assembly is not properly organized during initiation of bud growth. These results show that formin function is under the control of three distinct, essential Rho signaling pathways.  相似文献   

5.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.  相似文献   

6.
The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.  相似文献   

7.
Rho GTPases are important regulators of polarity in eukaryotic cells. In yeast they are involved in regulating the docking and fusion of secretory vesicles with the cell surface. Our analysis of a Rho3 mutant that is unable to interact with the Exo70 subunit of the exocyst reveals a normal polarization of the exocyst complex as well as other polarity markers. We also find that there is no redundancy between the Rho3-Exo70 and Rho1-Sec3 pathways in the localization of the exocyst. This suggests that Rho3 and Cdc42 act to polarize exocytosis by activating the exocytic machinery at the membrane without the need to first recruit it to sites of polarized growth. Consistent with this model, we find that the ability of Rho3 and Cdc42 to hydrolyze GTP is not required for their role in secretion. Moreover, our analysis of the Sec3 subunit of the exocyst suggests that polarization of the exocyst may be a consequence rather than a cause of polarized exocytosis.  相似文献   

8.
9.
Regulation of the formin for3p by cdc42p and bud6p   总被引:4,自引:2,他引:2       下载免费PDF全文
Formins are conserved actin nucleators responsible for the assembly of diverse actin structures. Many formins are controlled through an autoinhibitory mechanism involving the interaction of a C-terminal DAD sequence with an N-terminal DID sequence. Here, we show that the fission yeast formin for3p, which mediates actin cable assembly and polarized cell growth, is regulated by a similar autoinhibitory mechanism in vivo. Multiple sites govern for3p localization to cell tips. The localization and activity of for3p are inhibited by an intramolecular interaction of divergent DAD and DID-like sequences. A for3p DAD mutant expressed at endogenous levels produces more robust actin cables, which appear to have normal organization and dynamics. We identify cdc42p as the primary Rho GTPase involved in actin cable assembly and for3p regulation. Both cdc42p, which binds at the N terminus of for3p, and bud6p, which binds near the C-terminal DAD-like sequence, are needed for for3p localization and full activity, but a mutation in the for3p DAD restores for3p localization and other phenotypes of cdc42 and bud6 mutants. In particular, the for3p DAD mutation suppresses the bipolar growth (NETO) defect of bud6Delta cells. These findings suggest that cdc42p and bud6p activate for3p by relieving autoinhibition.  相似文献   

10.
Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.  相似文献   

11.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.  相似文献   

12.
Rho and Rab family GTPases play a key role in cytoskeletal organization and vesicular trafficking, but the exact mechanisms by which these GTPases regulate polarized cell growth are incompletely understood. A previous screen for genes that interact with CDC42, which encodes a Rho GTPase, found SWF1/PSL10. Here, we show Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, localizes to actin cables and cortical actin patches in Saccharomyces cerevisiae. Deletion of SWF1 results in misorganization of the actin cytoskeleton and decreased stability of actin filaments in vivo. Cdc42p localization depends upon Swf1p primarily after bud emergence. Importantly, we revealed that the actin regulating activity of Swf1p is independent of its DHHC motif. A swf1 mutant, in which alanine substituted for the cysteine required for the palmitoylation activity of DHHC-CRD proteins, displayed wild-type actin organization and Cdc42p localization. Bgl2p-marked exocytosis was found wild type in this mutant, although invertase secretion was impaired. These data indicate Swf1p has at least two distinct functions, one of which regulates actin organization and Bgl2p-marked secretion. This report is the first to link the function of a DHHC-CRD protein to Cdc42p and the regulation of the actin cytoskeleton.  相似文献   

13.
Cdc42p is a highly conserved low-molecular-weight GTPase that is involved in controlling cellular morphogenesis. We have isolated the Cdc42p homolog from the fission yeast Schizosaccharomyces pombe by its ability to complement the Saccharomyces cerevisiae cdc42-1ts mutation. S. pombe Cdc42p is 85% identical in predicted amino acid sequence to S. cerevisiae Cdc42p and 83% identical to the human Cdc42p homolog. The Cdc42p protein fractionates to both soluble and particulate fractions, suggesting that it exists in two cellular pools. We have disrupted the cdc42+ gene and shown that it is essential for growth. The cdc42 null phenotype is an arrest as small, round, dense cells. In addition, we have generated three site-specific mutations, G12V, Q61L, and D118A, in the Cdc42p GTP-binding domains that correspond to dominant-lethal mutations in S. cerevisiae CDC42. In contrast to the S. cerevisiae cdc42 mutations, the S. pombe cdc42 mutant alleles were not lethal when overexpressed. However, the cdc42 mutants did exhibit an abnormal morphological phenotype of large, misshapen cells, suggesting that S. pombe Cdc42p is involved in controlling polarized cell growth.  相似文献   

14.
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.  相似文献   

15.
Murray JM  Johnson DI 《Genetics》2000,154(1):155-165
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.  相似文献   

16.
The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis.  相似文献   

17.
18.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and the growth of cell surface are polarized, mediating bud emergence, bud growth, and cytokinesis. We identified CDC50 as a multicopy suppressor of the myo3 myo5-360 temperature-sensitive mutant, which is defective in organization of cortical actin patches. The cdc50 null mutant showed cold-sensitive cell cycle arrest with a small bud as reported previously. Cortical actin patches and Myo5p, which are normally localized to polarization sites, were depolarized in the cdc50 mutant. Furthermore, actin cables disappeared, and Bni1p and Gic1p, effectors of the Cdc42p small GTPase, were mislocalized in the cdc50 mutant. As predicted by its amino acid sequence, Cdc50p appears to be a transmembrane protein because it was solubilized from the membranes by detergent treatment. Cdc50p colocalized with Vps21p in endosomal compartments and was also localized to the class E compartment in the vps27 mutant. The cdc50 mutant showed defects in a late stage of endocytosis but not in the internalization step. It showed, however, only modest defects in vacuolar protein sorting. Our results indicate that Cdc50p is a novel endosomal protein that regulates polarized cell growth.  相似文献   

19.
The Cdc42p GTPase is involved in the signal transduction cascades controlling bud emergence and polarized cell growth in S. cerevisiae. Cells expressing the cdc42(V44A) effector domain mutant allele displayed morphological defects of highly elongated and multielongated budded cells indicative of a defect in the apical-isotropic switch in bud growth. In addition, these cells contained one, two, or multiple nuclei indicative of a G2/M delay in nuclear division and also a defect in cytokinesis and/or cell separation. Actin and chitin were delocalized, and septin ring structure was aberrant and partially delocalized to the tips of elongated cdc42(V44A) cells; however, Cdc42(V44A)p localization was normal. Two-hybrid protein analyses showed that the V44A mutation interfered with Cdc42p's interactions with Cla4p, a p21(Cdc42/Rac)-activated kinase (PAK)-like kinase, and the novel effectors Gic1p and Gic2p, but not with the Ste20p or Skm1p PAK-like kinases, the Bni1p formin, or the Iqg1p IQGAP homolog. Furthermore, the cdc42(V44A) morphological defects were suppressed by deletion of the Swe1p cyclin-dependent kinase inhibitory kinase and by overexpression of Cla4p, Ste20p, the Cdc12 septin protein, or the guanine nucleotide exchange factor Cdc24p. In sum, these results suggest that proper Cdc42p function is essential for timely progression through the apical-isotropic switch and G2/M transition and that Cdc42(V44A)p differentially interacts with a number of effectors and regulators.  相似文献   

20.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号