首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fecal viral flora of wild rodents   总被引:2,自引:0,他引:2  
The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals.  相似文献   

2.
The fecal viral flora of California sea lions   总被引:2,自引:0,他引:2  
California sea lions are one of the major marine mammal species along the Pacific coast of North America. Sea lions are susceptible to a wide variety of viruses, some of which can be transmitted to or from terrestrial mammals. Using an unbiased viral metagenomic approach, we surveyed the fecal virome in California sea lions of different ages and health statuses. Averages of 1.6 and 2.5 distinct mammalian viral species were shed by pups and juvenile sea lions, respectively. Previously undescribed mammalian viruses from four RNA virus families (Astroviridae, Picornaviridae, Caliciviridae, and Reoviridae) and one DNA virus family (Parvoviridae) were characterized. The first complete or partial genomes of sapeloviruses, sapoviruses, noroviruses, and bocavirus in marine mammals are reported. Astroviruses and bocaviruses showed the highest prevalence and abundance in California sea lion feces. The diversity of bacteriophages was higher in unweaned sea lion pups than in juveniles and animals in rehabilitation, where the phage community consisted largely of phages related to the family Microviridae. This study increases our understanding of the viral diversity in marine mammals, highlights the high rate of enteric viral infections in these highly social carnivores, and may be used as a baseline viral survey for comparison with samples from California sea lions during unexplained disease outbreaks.  相似文献   

3.
Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.  相似文献   

4.
Neonatal porcine diarrhoea of uncertain aetiology has been reported from a number of European countries. The aim of the present study was to use viral metagenomics to examine a potential viral involvement in this diarrhoea and to describe the intestinal virome with focus on eukaryotic viruses. Samples from the distal jejunum of 50 diarrhoeic and 19 healthy piglets from 10 affected herds were analysed. The viral fraction of the samples was isolated and nucleic acids (RNA and DNA fractions) were subjected to sequence independent amplification. Samples from diarrhoeic piglets from the same herds were pooled whereas samples from healthy piglets were analysed individually. In total, 29 clinical samples, plus two negative controls and one positive control consisting of a mock metagenome were sequenced using the Ion Torrent platform. The resulting sequence data was subjected to taxonomic classification using Kraken, Diamond and HMMER. In the healthy specimens, eight different mammalian virus families were detected (Adenoviridae, Anelloviridae, Astroviridae, Caliciviridae, Circoviridae, Parvoviridae, Picornaviridae, and Reoviridae) compared to four in the pooled diarrhoeic samples (Anelloviridae, Circoviridae, Picornaviridae, and Reoviridae). It was not possible to associate a particular virus family with the investigated diarrhoea. In conclusion, this study does not support the hypothesis that the investigated diarrhoea was caused by known mammalian viruses. The results do, however, indicate that known mammalian viruses were present in the intestine as early as 24–48 hours after birth, indicating immediate infection post-partum or possibly transplacental infection.  相似文献   

5.
Determining which animal viruses may be capable of infecting humans is currently intractable at the time of their discovery, precluding prioritization of high-risk viruses for early investigation and outbreak preparedness. Given the increasing use of genomics in virus discovery and the otherwise sparse knowledge of the biology of newly discovered viruses, we developed machine learning models that identify candidate zoonoses solely using signatures of host range encoded in viral genomes. Within a dataset of 861 viral species with known zoonotic status, our approach outperformed models based on the phylogenetic relatedness of viruses to known human-infecting viruses (area under the receiver operating characteristic curve [AUC] = 0.773), distinguishing high-risk viruses within families that contain a minority of human-infecting species and identifying putatively undetected or so far unrealized zoonoses. Analyses of the underpinnings of model predictions suggested the existence of generalizable features of viral genomes that are independent of virus taxonomic relationships and that may preadapt viruses to infect humans. Our model reduced a second set of 645 animal-associated viruses that were excluded from training to 272 high and 41 very high-risk candidate zoonoses and showed significantly elevated predicted zoonotic risk in viruses from nonhuman primates, but not other mammalian or avian host groups. A second application showed that our models could have identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a relatively high-risk coronavirus strain and that this prediction required no prior knowledge of zoonotic Severe Acute Respiratory Syndrome (SARS)-related coronaviruses. Genome-based zoonotic risk assessment provides a rapid, low-cost approach to enable evidence-driven virus surveillance and increases the feasibility of downstream biological and ecological characterization of viruses.

Surveillance of emerging viruses is one of the first steps to avoid the next pandemic. This study uses machine learning to identify many zoonotic viruses directly from their genomes. This allows rapid assessment of research priorities as soon as new viruses are discovered, focusing research and surveillance efforts on the viruses most likely to infect humans.  相似文献   

6.
7.
Endogenous viral elements in animal genomes   总被引:2,自引:0,他引:2  
Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.  相似文献   

8.
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.  相似文献   

9.
Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.  相似文献   

10.
11.
Viruses contain three common types of packaged genomes; double-stranded DNA (dsDNA), RNA (mostly single and occasionally double stranded) and single-stranded DNA (ssDNA). There are relatively straightforward explanations for the prevalence of viruses with dsDNA and RNA genomes, but the evolutionary basis for the apparent success of ssDNA viruses is less clear. The recent discovery of four ssDNA virus genomes that appear to have been formed by recombination between co-infecting RNA and ssDNA viruses, together with the high mutation rate of ssDNA viruses provide possible explanations. RNA–DNA recombination allows ssDNA viruses to access much broader sequence space than through nucleotide substitution and DNA–DNA recombination alone. Multiple non-exclusive mechanisms, all due to the unique replication of ssDNA viruses, are proposed for this unusual RNA capture. RNA capture provides an explanation for the evolutionary success of the ssDNA viruses and may help elucidate the mystery of integrated RNA viruses in viral and cellular DNA genomes.  相似文献   

12.
Arup Sen  George J. Todaro 《Cell》1977,10(1):91-99
A structural protein purified from the Rous sarcoma virus (RSV) can specifically bind in vitro to purified avian, but not mammalian, type C viral RNA. Following ultraviolet irradiation of viral particles under conditions which stabilize the polyploid 70S viral RNA, the same polypeptide can be directly purified from the RSV genome. Based on its electrophoretic mobility in polyacrylamide gels containing sodium dodecylsulfate, the RNA binding protein has been identified as the major phosphoprotein (p19) of avian type C viruses. Similar experiments show that the major phosphoproteins of mammalian type C viruses (p12 for murine viruses and p16 for endogenous primate viruses) are also the specific RNA binding proteins and, similarly, are found closely associated with the 70S RNA genomes in the intact viral particles.  相似文献   

13.
The viral RNAs of various mammalian retroviruses contain highly conserved sequences close to their 3' ends. This was demonstrated by interviral molecular hybridization between fractionated viral complementary DNA (cDNA) and RNA. cDNA near the 3' end (cDNA(3')) from a rat virus (RPL strain) was fractionated by size and mixed with mouse virus RNA (Rauscher leukemia virus). No hybridization occurred with total cDNA (cDNA(total)), in agreement with previous results, but a cross-reacting sequence was found with the fractionated cDNA(3'). The sequences between 50 to 400 nucleotides from the 3' terminus of heteropolymeric RNA were most hybridizable. The rat viral cDNA(3') hybridized with mouse virus RNA more extensively than with RNA of remotely related retroviruses. The related viral sequence of the rodent viruses (mouse and rat) showed as much divergence in heteroduplex thermal denaturation profiles as did the unique sequence DNA of these two rodents. This suggests that over a period of time, rodent viruses have preserved a sequence with changes correlated to phylogenetic distance of hosts. The cross-reacting sequence of replication-competent retroviruses was conserved even in the genome of the replication-defective sarcoma virus and was also located in these genomes near the 3' end of 30S RNA. A fraction of RD114 cDNA(3'), corresponding to the conserved region, cross-hybridized extensively with RNA of a baboon endogenous virus (M7). Fractions of similar size prepared from cDNA(3') of MPMV, a primate type D virus, hybridized with M7 RNA to a lesser extent. Hybridization was not observed between Mason-Pfizer monkey virus and M7 if total cDNA's were incubated with viral RNAs. The degree of cross-reaction of the shared sequence appeared to be influenced by viral ancestral relatedness and host cell phylogenetic relationships. Thus, the strikingly high extent of cross-reaction at the conserved region between rodent viruses and simian sarcoma virus and between baboon virus and RD114 virus may reflect ancestral relatedness of the viruses. Slight cross-reaction at the site between type B and C viruses of rodents (mouse mammary tumor virus and RPL virus, 58-2T) or type C and D viruses of primates (M7, RD114, and Mason-Pfizer monkey virus) may have arisen at the conserved region through a mechanism that depends more on the phylogenetic relatedness of the host cells than on the viral type or origin. Determining the sequence of the conserved region may help elucidate this mechanism. The conserved sequences in retroviruses described here may be an important functional unit for the life cycle of many retroviruses.  相似文献   

14.
We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis.  相似文献   

15.
Summary RNA genomes have been shown to mutate much more frequently than DNA genomes. It is generally assumed that this results in rapid evolution of RNA viral proteins. Here, an alternative hypothesis is proposed that close cooperation between positive-strand RNA viral proteins and those of the host cells required their coevolution, resulting in similar amino acid substitution rates. Constraints on compatibility with cellular proteins should determine, at any time, the covarion sets in RNA viral proteins. These ideas may be helpful in rationalizing the accumulating data on significant sequence similarities between proteins of positive-strand RNA viruses infecting evolutionarily distant hosts as well as between viral and cellular proteins.  相似文献   

16.
Zoonotic transmissions of emerging pathogens from wildlife to human have shaped the history of mankind. These events have also highlighted our poor understanding of microorganisms circulated in wild animals. Coronaviruses and astroviruses, which can be found from a wide range of mammals, were recently detected in bats. Strikingly, these bat viruses are genetically highly diverse and these interesting findings might help to better understand the evolution and ecology of these viruses. The discoveries of these novel bats viruses not only suggested that bats are important hosts for these virus families, but also reiterated the role of bats as a reservoir of viruses that might pose a zoonotic threat to human health.  相似文献   

17.
18.
The RNA virus that causes the Crimean Congo Hemorrhagic Fever (CCHF) is a tick-borne pathogen of the Nairovirus genus, family Bunyaviridae. Unlike many zoonotic viruses that are only passed between animals and humans, the CCHF virus can also be transmitted from human to human with an overall mortality rate approaching 30%. Currently, there are no atomic structures for any CCHF virus proteins or for any Nairovirus proteins. A critical component of the virus is the envelope Gn glycoprotein, which contains a C-terminal cytoplasmic tail. In other Bunyaviridae viruses, the Gn tail has been implicated in host-pathogen interaction and viral assembly. Here we report the NMR structure of the CCHF virus Gn cytoplasmic tail, residues 729-805. The structure contains a pair of tightly arranged dual ββα zinc fingers similar to those found in the Hantavirus genus, with which it shares about 12% sequence identity. Unlike Hantavirus zinc fingers, however, the CCHF virus zinc fingers bind viral RNA and contain contiguous clusters of conserved surface electrostatics. Our results provide insight into a likely role of the CCHF virus Gn zinc fingers in Nairovirus assembly.  相似文献   

19.
Chronic infections caused by hepatitis B virus (HBV) and/or hepatitis C virus (HCV) are the main risk factors for the development of hepatocellular carcinoma (HCC) in humans. Both viruses cause a wide spectrum of clinical manifestations ranging from healthy carrier state to acute and chronic hepatitis, liver cirrhosis, and HCC. HBV and HCV belong to different viral families (Hepadnoviridae and Flaviviridae, respectively); they are characterized by different genetic structures. Clinical manifestations of these viral infections result from the interaction between these viruses and host hepatocytes (i.e. between viral and cell genomes). Proteins encoded by both viruses play an important role in processes responsible for immortalization and transformation of these cells. Chronic inflammation determined by host immune response to the viral infection, hepatocyte death and their compensatory proliferation, as well as modulation of expression of some regulatory proteins of the cell (growth factors, cytokines, etc.) are the processes that play the major role in liver cancer induced by HBV and HCV.  相似文献   

20.
The identification and characterization of host cell membranes essential for positive-strand RNA virus replication should provide insight into the mechanisms of viral replication and potentially identify novel targets for broadly effective antiviral agents. The alphanodavirus flock house virus (FHV) is a positive-strand RNA virus with one of the smallest known genomes among animal RNA viruses, and it can replicate in insect, plant, mammalian, and yeast cells. To investigate the localization of FHV RNA replication, we generated polyclonal antisera against protein A, the FHV RNA-dependent RNA polymerase, which is the sole viral protein required for FHV RNA replication. We detected protein A within 4 h after infection of Drosophila DL-1 cells and, by differential and isopycnic gradient centrifugation, found that protein A was tightly membrane associated, similar to integral membrane replicase proteins from other positive-strand RNA viruses. Confocal immunofluorescence microscopy and virus-specific, actinomycin D-resistant bromo-UTP incorporation identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. Selective membrane permeabilization and immunoelectron microscopy further localized protein A to outer mitochondrial membranes. Electron microscopy revealed 40- to 60-nm membrane-bound spherical structures in the mitochondrial intermembrane space of FHV-infected cells, similar in ultrastructural appearance to tombusvirus- and togavirus-induced membrane structures. We concluded that FHV RNA replication occurs on outer mitochondrial membranes and shares fundamental biochemical and ultrastructural features with RNA replication of positive-strand RNA viruses from other families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号