首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf? (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli.  相似文献   

4.
Surfactant in respiratory distress syndrome and lung injury   总被引:6,自引:0,他引:6  
A deficiency in alveolar surfactant due to immaturity of alveolar type II epithelial cells causes respiratory distress syndrome (RDS). In contrast to animals, the fetal maturation of surfactant in human lungs takes place before term, exceptionally large quantities of surfactant accumulating in the amniotic fluid. The antenatal development of surfactant secretion is very variable but corresponds closely to the risk of RDS. The variation in SP-A and SP-B genes, race, sex and perinatal complications influence susceptibility to RDS. Surfactant therapy has improved the prognosis of RDS remarkably. Abnormalities in alveolar or airway surfactant characterize many lung and airway diseases. In the acute respiratory distress syndrome, deficiencies in surfactant components (phospholipids, SP-B, SP-A) are evident, and may be caused by pro-inflammatory cytokines (IL-1, TNF) that decrease surfactant components. The resultant atelectasis localizes the disease, possibly allowing healing (regeneration, increase in surfactant). In the immature fetus, cytokines accelerate the differentiation of surfactant, preventing RDS. After birth, however, persistent inflammation is associated with low SP-A and chronic lung disease. A future challenge is to understand how to inhibit or redirect the inflammatory response from tissue destruction and poor growth towards normal lung development and regeneration.  相似文献   

5.
Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks gestation. Proper lung development from 23–28 weeks requires coordinated cell proliferation and differentiation. Infants born at this age are at high risk for respiratory distress syndrome (RDS), a lung disease characterized by insufficient surfactant production due to immaturity of the alveoli and its constituent cells in the lung. The ErbB4 receptor and its stimulation by neuregulin (NRG) plays a critical role in surfactant synthesis by alveolar type II epithelial cells. In this review, we first provide an introduction to normal human alveolar development, followed by a discussion of the neuregulin and ErbB4-mediated mechanisms regulating alveolar development and surfactant production.  相似文献   

6.
A phospholipid profile, the main features of which were the lecithin/sphingomyelin (L/S) ratio and the presence or absence of phosphatidylglycerol (PG), was determined in amniotic fluid from 188 patients. There was a mature profile (L/S ratio of at least 2 . 0 and detectable PG) in 145 patients, including seven insulin-dependent diabetics, and noe of their babies developed respiratory distress syndrome (RDS). The L/S ratio was less than 2 . 0 and PG absent in 12 patients, nine of whose babies developed RDS, whereas only three small babies (delivered between 28 and 35 weeks because of fulminant pre-eclampsia or severe abruptio placentae) out of 31 developed RDS when the L/S ratio was less than 2 . 0 but PG was present. When amniotic fluid was collected from the vagina only one out of 69 babies developed RDS when PG was present (regardless of the L/S ratio), while all of seven babies developed RDS when PG was absent. It is concluded that the amniotic fluid phospholipid profile, particularly the presence or absence of PG, gives an accurate assessment of fetal lung maturation. The profile may prove a useful adjunct to the management of high-risk pregnancies, especially after premature membrane rupture and perhaps also when the mother is diabetic.  相似文献   

7.
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.  相似文献   

8.
9.
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.  相似文献   

10.
Intra-amniotic lipopolysaccharide (LPS) and cytokines may decrease respiratory distress syndrome (RDS) and increase chronic lung disease in the newborn. The aim was to identify the primary inflammatory mediators regulating the expression of surfactant proteins (SP) in explants from immature (22-day-old fetus) and mature (30-day term fetus and 2-day-old newborn) rabbits. In immature lung, interleukin (IL)-1alpha and IL-1beta upregulated the expression of SP-A and SP-B. These effects of IL-1 were diminished, and SP-C mRNA was suppressed additively in the presence of tumor necrosis factor (TNF)-alpha and either LPS or interferon (IFN)-gamma. LPS, TNF-alpha, or IFN-gamma had no effect alone. In explants from the term fetus and the newborn, LPS, IL-1alpha, and TNF-alpha additively suppressed the SPs. LPS acutely induced IL-1alpha in alveolar macrophages in mature lung but not in the immature lung. IFN-gamma that generally has low expression in intrauterine infection decreased the age dependence of the other agonists' effects on SPs. The present study serves to explain the variation of the pulmonary outcome after an inflammatory insult. We propose that IL-1 from extrapulmonary sources induces the SPs in premature lung and is responsible for the decreased risk of RDS in intra-amniotic infection.  相似文献   

11.
Human cytomegalovirus (HCMV) is the leading viral cause of birth defects and life-threatening lung-associated diseases in premature infants and immunocompromised children. Although the fetal lung is a major target organ of the virus, HCMV lung pathogenesis has remained unexplored, possibly as a result of extreme host range restriction. To overcome this hurdle, we generated a SCID-hu lung mouse model that closely recapitulates the discrete stages of human lung development in utero. Human fetal lung tissue was implanted into severe combined immunodeficient (CB17-scid) mice and inoculated by direct injection with the VR1814 clinical isolate of HCMV. Virus replication in the fetal lung was assessed by the quantification of infectious virus titers and HCMV genome copies and the detection of HCMV proteins by immunohistochemistry and Western blotting. We show that HCMV efficiently replicated in the lung implants during a 2-week period, forming large viral lesions. The virus productively infected alveolar epithelial and mesenchymal cells, imitating congenital infection of the fetal lung. HCMV replication triggered apoptosis near and within the viral lesions and impaired the production of surfactant proteins in the alveolar epithelium. Our findings highlight that congenital and neonatal HCMV infection can adversely impact lung development, leading to pneumonia and acute lung injury. We have successfully developed a small-animal model that closely recapitulates fetal and neonatal lung development and provides a valuable, biologically relevant tool for an understanding of the lung pathogenesis of HCMV as well as other human respiratory viruses. Additionally, this model would greatly facilitate the development and testing of new antiviral therapies for HCMV along with select human pulmonary pathogens.  相似文献   

12.
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.  相似文献   

13.

Background

Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children?Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation.IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models.

Methods

IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years.

Results and Discussion

Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress?Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children.The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations.

Conclusions

What are the most useful IOS and model parameters?In this work we demonstrate that IOS parameters such as resistance at 5 Hz (R5), frequency-dependence of resistance (fdR: R5-R20), reactance area (AX), and parameter estimates of respiratory system such as Cp and Rp provide sensitive indicators of lung function and have the capacity to differentiate between obstructed and non-obstructed airway conditions. They are also capable of demonstrating airway growth-related changes over a two-year period.We conclude that the IOS parameters AX and the eRIC model derived parameter Cp are the most reliable parameters to track lung function in children before and after bronchodilator and over a time period (2 years).Which model is more suitable for interpreting IOS data?IOS data are equally well-modelled by eRIC and aRIC models, based on the close correlations of their corresponding parameters - excluding upper airway shunt compliance. The eRIC model is a more parsimonious and equally powerful model in capturing the differences in IOS indices between SAI and H children. Therefore, it may be considered a clinically-preferred model of lung function.
  相似文献   

14.
15.
This study aimed at exploring the expression of Surfactant protein-C (SP-C) and Ki67 in autopsy lung tissues of premature infants dying from respiratory distress syndrome (RDS) who were exposed to mechanical ventilation and elevated oxygen concentrations. The possible influence of pulmonary surfactant (PS) on the expression of SP-C and Ki67 was also investigated. Thirty preterm infants were selected who were histologically and clinically diagnosed as RDS. Preterm infants with RDS were divided into 4 groups, according to the time of death: infants ventilated for 1–3 days, 4–8 days, 9–16 days and >6 days. Five premature infants died within 1 day after delivery for non- pulmonary reasons served as controls. The expression of SP-C and Ki67 in lungs was detected by immunohistochemistry. Compared with the control group, the expression of SP-C and Ki67 in RDS infants decreased significantly after 1–3 days of ventilation, but increased after 4 days and reached peak value after 9–16 days. No significant difference in the expression of SP-C and Ki67 was found between infants treated with PS and those without. Thus our results suggest SP-C and Ki67 may have participated in the pulmonary pathological process in ventilated/oxygen treated preterm infants with RDS, and exogenous surfactant had no effect on the expression of SP-C and Ki67 in the lungs of ventilated/oxygen treated preterm infants with RDS.Key words: respiratory distress syndrome, surfactant protein-C, Ki67, preterm.  相似文献   

16.
During a severe local or systemic inflammatory response, immune mediators target lung tissue. This process may lead to acute lung injury and impaired diffusion of gas molecules. Although several mathematical models of gas exchange have been described, none simulate acute lung injury following inflammatory stress. In view of recent laboratory and clinical progress in the understanding of the pathophysiology of acute lung injury, such a mathematical model would be useful. We first derived a partial differential equations model of gas exchange on a small physiological unit of the lung (≈25 alveoli), which we refer to as a respiratory unit (RU). We next developed a simple model of the acute inflammatory response and implemented its effects within a RU, creating a single RU model. Linking multiple RUs with various ventilation/perfusion ratios and taking into account pulmonary venous blood remixing yielded our lung-scale model. Using the lung-scale model, we explored the predicted effects of inflammation on ventilation/perfusion distribution and the resulting pulmonary venous partial pressure oxygen level during systemic inflammatory stresses. This model represents a first step towards the development of anatomically faithful models of gas exchange and ventilation under a broad range of local and systemic inflammatory stimuli resulting in acute lung injury, such as infection and mechanical strain of lung tissue.  相似文献   

17.
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation—6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.  相似文献   

18.
The surfactant or phospholipid lining of the alveolar surface is essential for lung function and airway stability. In premature neonates, the idiopathic respiratory distress syndrome (IRDS) is usually due to a prenatal deficiency in pulmonary surfactant. Experimental and clinical investigations with corticosteroids and other drugs were conducted to study various aspects of lung maturation. The present study of Ambroxol, a new compound with surfactant stimulating properties, was carried out on adult and foetal animals. In adult experimental animals an increase in the activity of Type II pneumocytes was shown by measuring various biochemical parameters. In models of premature animals comparable to clinical IRDS conditions, the antenatal treatment of foetal lambs and rabbits with Ambroxol enhanced lung maturation.  相似文献   

19.
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.  相似文献   

20.
Damage to lungs may occur from systemic as well as inhalational exposure to various illegal drugs of abuse. Aspiration pneumonia probably represents the most common pulmonary complication in relation to consciousness impairment. Some pulmonary consequences may be specifically related to one given drug. Prolonged smoking of marijuana may result in respiratory symptoms suggestive of obstructive lung disease. Non-cardiogenic pulmonary edema has been attributed to heroin, despite debated mechanisms including attempted inspiration against a closed glottis, hypoxic damage to alveolar integrity, neurogenic vasoactive response to stress, and opiate-induced anaphylactoid reaction. Naloxone-related precipitated withdrawal resulting in massive sympathetic response with heart stunning has been mistakenly implicated. In crack users, acute respiratory syndromes called “crack-lung” with fever, hemoptysis, dyspnea, and pulmonary infiltration on chest X-rays have been reported up-to 48 h after free-base cocaine inhalation, with features of pulmonary edema, interstitial pneumonia, diffuse alveolar hemorrhage, and eosinophil infiltration. The high-temperature of volatilized cocaine and the presence of impurities, as well as cocaine-induced local vasoconstriction have been suggested to explain alveolar damage. Some other drug-related pulmonary insults result from the route of drug self-administration. In intravenous drug users, granulomatous pneumonia with multinodular patterns on thoracic imaging is due to drug contaminants like talcum. Septic embolism from right-sided endocarditis represents an alternative diagnosis in case of sepsis from pulmonary origin. Following inhalation, pneumothorax, and pneumomediastinum have been attributed to increased intrathoracic pressure in relation to vigorous coughing or repeated Valsalva maneuvers, in an attempt to absorb the maximal possible drug amount. In conclusion, pulmonary consequences of illicit drugs are various, resulting in both acute life-threatening conditions and long-term functional respiratory sequelae. A better understanding of their spectrum and the implicated mechanisms of injury should help to improve patient management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号