首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Accurate phylogenetic reconstruction methods are currently limited to a maximum of few dozens of taxa. Supertree methods construct a large tree over a large set of taxa, from a set of small trees over overlapping subsets of the complete taxa set. Hence, in order to construct the tree of life over a million and a half different species, the use of a supertree method over the product of accurate methods, is inevitable. Perhaps the simplest version of this task that is still widely applicable, yet quite challenging, is quartet-based reconstruction. This problem lies at the root of many tree reconstruction methods and theoretical as well as experimental results have been reported. Nevertheless, dealing with false, conflicting quartet trees remains problematic. In this paper, we describe an algorithm for constructing a tree from a set of input quartet trees even with a significant fraction of errors. We show empirically that conflicts in the inputs are handled satisfactorily and that it significantly outperforms and outraces the Matrix Representation with Parsimony (MRP) methods that have previously been most successful in dealing with supertrees. Our algorithm is based on a divide and conquer algorithm where our divide step uses a semidefinite programming (SDP) formulation of MaxCut. We remark that this builds on previous work of ours for piecing together trees from rooted triplet trees. The recursion for unrooted quartets, however, is more complicated in that even with completely consistent set of quartet trees the problem is NP-hard, as opposed to the problem for triples where there is a linear time algorithm. This complexity leads to several issues and some solutions of possible independent interest.  相似文献   

2.
MOTIVATION: Reconstructing evolutionary trees is an important problem in biology. A response to the computational intractability of most of the traditional criteria for inferring evolutionary trees has been a focus on new criteria, particularly quartet-based methods that seek to merge trees derived on subsets of four species from a given species-set into a tree for that entire set. Unfortunately, most of these methods are very sensitive to errors in the reconstruction of the trees for individual quartets of species. A recently developed technique called quartet cleaning can alleviate this difficulty in certain cases by using redundant information in the complete set of quartet topologies for a given species-set to correct such errors. RESULTS: In this paper, we describe two new local vertex quartet cleaning algorithms which have optimal time complexity and error-correction bound, respectively. These are the first known local vertex quartet cleaning algorithms that are optimal with respect to either of these attributes.  相似文献   

3.
Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods.  相似文献   

4.
A new approach for comparative analysis of multiple trees reconstructed for representative protein families is proposed. This approach is based on the hypothesis of gene duplication, gene loss and horizontal gene transfer and makes use of stochastic methods and optimization. We present a species tree of 40 prokaryotic organisms obtained by our algorithm on the basis of 132 clusters of orthologous groups of proteins (COGs) from the GenBank of the National Center for Biotechnology Information (USA). We also present a computer technology intended to determine horizontally transferred genes. Some application results of the technology, based on comparative analysis of protein and species trees, are given.  相似文献   

5.
IQPNNI: moving fast through tree space and stopping in time   总被引:12,自引:0,他引:12  
An efficient tree reconstruction method (IQPNNI) is introduced to reconstruct a phylogenetic tree based on DNA or amino acid sequence data. Our approach combines various fast algorithms to generate a list of potential candidate trees. The key ingredient is the definition of so-called important quartets (IQs), which allow the computation of an intermediate tree in O(n(2)) time for n sequences. The resulting tree is then further optimized by applying the nearest neighbor interchange (NNI) operation. Subsequently a random fraction of the sequences is deleted from the best tree found so far. The deleted sequences are then re-inserted in the smaller tree using the important quartet puzzling (IQP) algorithm. These steps are repeated several times and the best tree, with respect to the likelihood criterion, is considered as the inferred phylogenetic tree. Moreover, we suggest a rule which indicates when to stop the search. Simulations show that IQPNNI gives a slightly better accuracy than other programs tested. Moreover, we applied the approach to 218 small subunit rRNA sequences and 500 rbcL sequences. We found trees with higher likelihood compared to the results by others. A program to reconstruct DNA or amino acid based phylogenetic trees is available online (http://www.bi.uni-duesseldorf.de/software/iqpnni).  相似文献   

6.
Maximum likelihood supertrees   总被引:2,自引:0,他引:2  
  相似文献   

7.
Prokaryotic organisms share genetic material across species boundaries by means of a process known as horizontal gene transfer (HGT). This process has great significance for understanding prokaryotic genome diversification and unraveling their complexities. Phylogeny-based detection of HGT is one of the most commonly used methods for this task, and is based on the fundamental fact that HGT may cause gene trees to disagree with one another, as well as with the species phylogeny. Using these methods, we can compare gene and species trees, and infer a set of HGT events to reconcile the differences among these trees. In this paper, we address three factors that confound the detection of the true HGT events, including the donors and recipients of horizontally transferred genes. First, we study experimentally the effects of error in the estimated gene trees (statistical error) on the accuracy of inferred HGT events. Our results indicate that statistical error leads to overestimation of the number of HGT events, and that HGT detection methods should be designed with unresolved gene trees in mind. Second, we demonstrate, both theoretically and empirically, that based on topological comparison alone, the number of HGT scenarios that reconcile a pair of species/gene trees may be exponential. This number may be reduced when branch lengths in both trees are estimated correctly. This set of results implies that in the absence of additional biological information, and/or a biological model of how HGT occurs, multiple HGT scenarios must be sought, and efficient strategies for how to enumerate such solutions must be developed. Third, we address the issue of lineage sorting, how it confounds HGT detection, and how to incorporate it with HGT into a single stochastic framework that distinguishes between the two events by extending population genetics theories. This result is very important, particularly when analyzing closely related organisms, where coalescent effects may not be ignored when reconciling gene trees. In addition to these three confounding factors, we consider the problem of enumerating all valid coalescent scenarios that constitute plausible species/gene tree reconciliations, and develop a polynomial-time dynamic programming algorithm for solving it. This result bears great significance on reducing the search space for heuristics that seek reconciliation scenarios. Finally, we show, empirically, that the locality of incongruence between a pair of trees has an impact on the numbers of HGT and coalescent reconciliation scenarios.  相似文献   

8.

Background  

A number of algorithms have been developed for calculating the quartet distance between two evolutionary trees on the same set of species. The quartet distance is the number of quartets – sub-trees induced by four leaves – that differs between the trees. Mostly, these algorithms are restricted to work on binary trees, but recently we have developed algorithms that work on trees of arbitrary degree.  相似文献   

9.
From the DNA sequences for N taxa, the (generally unknown) phylogenetic tree T that gave rise to them is to be reconstructed. Various methods give rise, for each quartet J consisting of exactly four taxa, to a predicted tree L(J) based only on the sequences in J, and these are then used to reconstruct T. The author defines an "error-correcting map" (Ec), which replaces each L(J) with a new tree, Ec(L)(J), which has been corrected using other trees, L(K), in the list L. The "quartet distance" between two trees is defined as the number of quartets J on which the two trees differ, and two distinct trees are shown to always have quartet distance of at least N - 3. If L has quartet distance at most (N - 4)/2 from T, then Ec(L) will coincide with the correct list for T; and this result cannot be improved. In general, Ec can correct many more errors in L. Iteration of the map Ec may produce still more accurate lists. Simulations are reported which often show improvement even when the quartet distance considerably exceeds (N - 4)/2. Moreover, the Buneman tree for Ec(L) is shown to refine the Buneman tree for L, so that strongly supported edges for L remain strongly supported for Ec(L). Simulations show that if methods such as the C-tree or hypercleaning are applied to Ec(L), the resulting trees often have more resolution than when the methods are applied only to L.  相似文献   

10.
Supertree methods are used to construct a large tree over a large set of taxa from a set of small trees over overlapping subsets of the complete taxa set. Since accurate reconstruction methods are currently limited to a maximum of a few dozen taxa, the use of a supertree method in order to construct the tree of life is inevitable. Supertree methods are broadly divided according to the input trees: When the input trees are unrooted, the basic reconstruction unit is a quartet tree. In this case, the basic decision problem of whether there exists a tree that agrees with all quartets is NP-complete. On the other hand, when the input trees are rooted, the basic reconstruction unit is a rooted triplet and the above decision problem has a polynomial time algorithm. However, when there is no tree which agrees with all triplets, it would be desirable to find the tree that agrees with the maximum number of triplets. However, this optimization problem was shown to be NP-hard. Current heuristic approaches perform min cut on a graph representing the triplets inconsistency and return a tree that is guaranteed to satisfy some required properties. In this work, we present a different heuristic approach that guarantees the properties provided by the current methods and give experimental evidence that it significantly outperforms currently used methods. This method is based on a divide and conquer approach, where the min cut in the divide step is replaced by a max cut in a variant of the same graph. The latter is achieved by a lightweight semidefinite programming-like heuristic that leads to very fast running times  相似文献   

11.
Horizontal gene transfer, genome innovation and evolution   总被引:10,自引:0,他引:10  
To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.  相似文献   

12.
Horizontal gene transfer is now recognized as an important mechanism of evolution. Several methods to detect horizontally transferred genes have been suggested. These methods are based on either nucleotide composition or the failure to find a similar gene in closely related species. Genes that evolve vertically between closely related species can be divided into those that retain homologous chromosomal positions (positional orthologs) and those that do not. By comparing open reading frames in the Escherichia coli and Salmonella typhi genomes, we identified 2,728 positional orthologs since these species split 100 MYA. A group of 1,144 novel E. coli genes were unusually diverged from their S. typhi counterparts. These novel genes included those that had been horizontally transferred into E. coli, as well as members of gene pairs that had been rearranged or deleted. Positional orthologs were used to investigate compositional methods of identifying horizontally transferred genes. A large number of E. coli genes with normal nucleotide composition have no apparent ortholog in S. typhi, and many genes of atypical composition do, in fact, have positional orthologs. A phylogenetic approach was employed to confirm selected examples of horizontal transmission among the novel groups of genes. Our analysis of 80 E. coli genes determined that a number of genes previously classified as horizontally transferred based on base composition and codon bias were native, and genes previously classified as native appeared to be horizontally transferred. Hence, atypical nucleotide composition alone is not a reliable indicator of horizontal transmission.  相似文献   

13.
It is desirable to estimate a tree of life, a species tree including all available species in the 3 superkingdoms, Archaea, Bacteria, and Eukaryota, using not a limited number of genes but full-scale genome information. Here, we report a new method for constructing a tree of life based on protein domain organizations, that is, sequential order of domains in a protein, of all proteins detected in a genome of an organism. The new method is free from the identification of orthologous gene sets and therefore does not require the burdensome and error-prone computation. By pairwise comparisons of the repertoires of protein domain organizations of 17 archaeal, 136 bacterial, and 14 eukaryotic organisms, we computed evolutionary distances among them and constructed a tree of life. Our tree shows monophyly in Archaea, Bacteria, and Eukaryota and then monophyly in each of eukaryotic kingdoms and in most bacterial phyla. In addition, the branching pattern of the bacterial phyla in our tree is consistent with the widely accepted bacterial taxonomy and is very close to other genome-based trees. A couple of inconsistent aspects between the traditional trees and the genome-based trees including ours, however, would perhaps urge to revise the conventional view, particularly on the phylogenetic positions of hyperthermophiles.  相似文献   

14.
Liu L  Pearl DK 《Systematic biology》2007,56(3):504-514
The desire to infer the evolutionary history of a group of species should be more viable now that a considerable amount of multilocus molecular data is available. However, the current molecular phylogenetic paradigm still reconstructs gene trees to represent the species tree. Further, commonly used methods of combining data, such as the concatenation method, are known to be inconsistent in some circumstances. In this paper, we propose a Bayesian hierarchical model to estimate the phylogeny of a group of species using multiple estimated gene tree distributions, such as those that arise in a Bayesian analysis of DNA sequence data. Our model employs substitution models used in traditional phylogenetics but also uses coalescent theory to explain genealogical signals from species trees to gene trees and from gene trees to sequence data, thereby forming a complete stochastic model to estimate gene trees, species trees, ancestral population sizes, and species divergence times simultaneously. Our model is founded on the assumption that gene trees, even of unlinked loci, are correlated due to being derived from a single species tree and therefore should be estimated jointly. We apply the method to two multilocus data sets of DNA sequences. The estimates of the species tree topology and divergence times appear to be robust to the prior of the population size, whereas the estimates of effective population sizes are sensitive to the prior used in the analysis. These analyses also suggest that the model is superior to the concatenation method in fitting these data sets and thus provides a more realistic assessment of the variability in the distribution of the species tree that may have produced the molecular information at hand. Future improvements of our model and algorithm should include consideration of other factors that can cause discordance of gene trees and species trees, such as horizontal transfer or gene duplication.  相似文献   

15.
Inferring species phylogenies is an important part of understanding molecular evolution. Even so, it is well known that an accurate phylogenetic tree reconstruction for a single gene does not always necessarily correspond to the species phylogeny. One commonly accepted strategy to cope with this problem is to sequence many genes; the way in which to analyze the resulting collection of genes is somewhat more contentious. Supermatrix and supertree methods can be used, although these can suppress conflicts arising from true differences in the gene trees caused by processes such as lineage sorting, horizontal gene transfer, or gene duplication and loss. In 2004, Huson et al. (IEEE/ACM Trans. Comput. Biol. Bioinformatics 1:151-158) presented the Z-closure method that can circumvent this problem by generating a supernetwork as opposed to a supertree. Here we present an alternative way for generating supernetworks called Q-imputation. In particular, we describe a method that uses quartet information to add missing taxa into gene trees. The resulting trees are subsequently used to generate consensus networks, networks that generalize strict and majority-rule consensus trees. Through simulations and application to real data sets, we compare Q-imputation to the matrix representation with parsimony (MRP) supertree method and Z-closure, and demonstrate that it provides a useful complementary tool.  相似文献   

16.
ABSTRACT: BACKGROUND: Distance-based phylogenetic reconstruction methods use evolutionary distances between species in order to reconstruct the phylogenetic tree spanning them. There are many different methods for estimating distances from sequence data. These methods assume different substitution models and have different statistical properties. Since the true substitution model is typically unknown, it is important to consider the effect of model misspecification on the performance of a distance estimation method. RESULTS: This paper continues the line of research which attempts to adjust to each given set of input sequences a distance function which maximizes the expected topological accuracy of the reconstructed tree. We focus here on the effect of systematic error caused by assuming an inadequate model, but consider also the stochastic error caused by using short sequences. We introduce a theoretical framework for analyzing both sources of error based on the notion of deviation from additivity, which quantifies the contribution of model misspecification to the estimation error. We demonstrate this framework by studying the behavior of the Jukes-Cantor distance function when applied to data generated according to Kimura's two-parameter model with a transition-transversion bias. We provide both a theoretical derivation for this case, and a detailed simulation study on quartet trees. CONCLUSIONS: We demonstrate both analytically and experimentally that by deliberately assuming an oversimplified evolutionary model, it is possible to increase the topological accuracy of reconstruction. Our theoretical framework provides new insights into the mechanisms that enables statistically inconsistent reconstruction methods to outperform consistent methods.  相似文献   

17.
Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.  相似文献   

18.
Yang CC  Sakai H  Numa H  Itoh T 《Gene》2011,477(1-2):53-60
Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.  相似文献   

19.
We present a further application of the stochastic model previously described (Lanave et al., 1984, 1985) for measuring the nucleotide substitution rate in the mammalian evolution of the mitochondrial DNA (mtDNA). The applicability of this method depends on the validity of "stationarity conditions" (equal nucleotide frequencies at first, second and third silent codon positions in homologous protein coding genes). In the comparison of homologous sequences satisfying the stationarity condition at the silent sites, only the four codon families (quartets) for which both transitions and transversions are silent at the third position are considered here. This has allowed us to estimate the transition and transversion rates for any pair of species. We have analyzed the third silent codon position of the triplet rat-mouse-cow, of a series of slightly divergent primates and of two Drosophila species. In terms of two external dating input we have then determined the phylogenetic trees for rat, mouse, and cow as well as for a number of primates including man. The phylogenetic tree that we have derived for the triplet rat, mouse and cow agrees with that we had previously determined by analyzing the first, second and third silent codon positions (in both duets and quartets) of mt genes (Lanave et al., 1985). For primates our method leads to the following branching order from the oldest to the most recent: Gibbon, Orangutan, Gorilla, Chimpanzee and Man. In absolute time, fixing the distance Chimpanzee-Man as 5 million years (Myr) we estimate the dating of the divergence nodes as: Gorilla 7 Myr; Orangutan 16 Myr; Gibbon 20 Myr. In all cases analyzed, the transition rate has been found to be substantially higher than the transversion rate. Moreover we have found that the transition/transversion ratio is different in the various lineages. We suggest that this fact is probably related to the nucleotide frequencies at the third silent codon position.  相似文献   

20.
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号