首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella.  相似文献   

3.
The ERM (ezrin/radixin/moesin) proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to regulated HCl secretion in gastric parietal cells. Here, we show that the integrity of ezrin is essential for parietal cell activation and provide the first evidence that ezrin interacts with PALS1, an evolutionarily conserved PDZ and SH3 domain-containing protein. Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells. Furthermore, our study shows that PALS1 is essential for the apical localization of ezrin, as either suppression of PALS1 protein accumulation or deletion of the PALS1-binding domain of ezrin eliminated the apical localization of ezrin. Finally, our study demonstrates the essential role of ezrin-PALS1 interaction in the apical membrane remodeling associated with parietal cell secretion. Taken together, these results define a novel molecular mechanism linking ezrin to the conserved apical polarity complexes and their roles in polarized epithelial secretion of gastric parietal cells.  相似文献   

4.
Ezrin connects the apical F-actin scaffold to membrane proteins in the apical brush border of intestinal epithelial cells. Yet, the mechanisms that recruit ezrin to the apical domain remain obscure. Using stable CACO-2 transfectants expressing keratin 8 (K8) antisense RNA under a tetracycline-responsive element, we showed that the actin-ezrin scaffold cannot assemble in the absence of intermediate filaments (IFs). Overexpression of ezrin partially rescued this phenotype. Overexpression of K8 in mice also disrupted the assembly of the brush border, but ezrin distributed away from the apical membrane in spots along supernumerary IFs. In cytochalasin D-treated cells ezrin localized to a subapical compartment and coimmunoprecipitated with IFs. Overexpression of ezrin in undifferentiated cells showed a Triton-insoluble ezrin compartment negative for phospho-T567 (dormant) ezrin visualized as spots along IFs. Pulse-chase analysis showed that Triton-insoluble, newly synthesized ezrin transiently coimmunoprecipitates with IFs during the first 30 min of the chase. Dormant, but not active (p-T567), ezrin bound in vitro to isolated denatured keratins in Far-Western analysis and to native IFs in pull-down assays. We conclude that a transient association to IFs is an early step in the polarized assembly of apical ezrin in intestinal epithelial cells.  相似文献   

5.
The sodium hydrogen exchanger isoform 3 (NHE3) mediates absorption of sodium, bicarbonate and water from renal and intestinal lumina. This activity is fundamental to the maintenance of a physiological plasma pH and blood pressure. To perform this function NHE3 must be present in the apical membrane of renal tubular and intestinal epithelia. The molecular determinants of this localization have not been conclusively determined, although linkage to the apical actin cytoskeleton through ezrin has been proposed. We set out to evaluate this hypothesis. Functional studies of NHE3 activity were performed on ezrin knockdown mice (Vil2kd/kd) and NHE3 activity similar to wild-type animals detected. Interpretation of this finding was difficult as other ERM (ezrin/radixin/moesin) proteins were present. We therefore generated an epithelial cell culture model where ezrin was the only detectable ERM. After knockdown of ezrin expression with siRNA, radixin and moesin expression remained undetectable. Consistent with the animal ultrastructural data, cells lacking ezrin retained an epithelial phenotype but had shortened and thicker microvilli. NHE3 localization was identical to cells transfected with non-targeting siRNA. The attachment of NHE3 to the apical cytoskeleton was unaltered as assessed by fluorescent recovery after photobleaching (FRAP) and the solubility of NHE3 in Triton X-100. Baseline NHE3 activity was unaltered, however, cAMP-dependent inhibition of NHE3 was largely lost even though NHE3 was phosphorylated at serines 552 and 605. Thus, ezrin is not necessary for the apical localization, attachment to the cytoskeleton, baseline activity or cAMP induced phosphrylation of NHE3, but instead is required for cAMP mediated inhibition.  相似文献   

6.
Ezrin, a membrane-actin cytoskeleton linker, which participates in epithelial cell morphogenesis, is held inactive in the cytoplasm through an intramolecular interaction. Phosphatidylinositol 4,5-bisphosphate (PIP2) binding and the phosphorylation of threonine 567 (T567) are involved in the activation process that unmasks both membrane and actin binding sites. Here, we demonstrate that ezrin binding to PIP2, through its NH2-terminal domain, is required for T567 phosphorylation and thus for the conformational activation of ezrin in vivo. Furthermore, we found that the T567D mutation mimicking T567 phosphorylation bypasses the need for PIP2 binding for unmasking both membrane and actin binding sites. However, PIP2 binding and T567 phosphorylation are both necessary for the correct apical localization of ezrin and for its role in epithelial cell morphogenesis. These results establish that PIP2 binding and T567 phosphorylation act sequentially to allow ezrin to exert its cellular functions.  相似文献   

7.
MisL is an autotransporter protein encoded by Salmonella pathogenicity island 3 (SPI3). To investigate the role of MisL in Salmonella enterica serotype Typhimurium (S. Typhimurium) pathogenesis, we characterized its function during infection of mice and identified a host receptor for this adhesin. In a mouse model of S. Typhimurium intestinal persistence, a misL mutant was shed with the faeces in significantly lower numbers than the wild type and was impaired in its ability to colonize the cecum. Previous studies have implicated binding of extracellular matrix proteins as a possible mechanism for S. Typhimurium intestinal persistence. A gluthathione-S-transferase (GST) fusion protein to the MisL passenger domain (GST-MisL(29-281)) was constructed to investigate binding to extracellular matrix proteins. In a solid-phase binding assay the purified GST-MisL(29-281) fusion protein bound to fibronectin and collagen IV, but not to collagen I. MisL expression was not detected by Western blot in S. Typhimurium grown under standard laboratory conditions. However, when expression of the cloned misL gene was driven by the Escherichia coli arabinose promoter, MisL could be detected in the S. Typhimurium outer membrane by Western blot and on the bacterial cell surface by flow cytometry. Expression of MisL enabled S. Typhimurium to bind fibronectin to its cell surface, resulting in attachment to fibronectin-coated glass slides and in increased invasiveness for human epithelial cells derived from colonic carcinoma (T84 cells). These data identify MisL as an extracellular matrix adhesin involved in intestinal colonization.  相似文献   

8.
Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.  相似文献   

9.
10.
In human intestinal disease induced by Salmonella enterica serotype Typhimurium (S. typhimurium) transepithelial migration of polymorphonuclear leukocytes (PMNs) rapidly follows attachment of the bacteria to the epithelial apical membrane. Previously, we have shown that the S. typhimurium effector protein, SipA, plays a pivotal role in signalling epithelial cell responses that lead to the transepithelial migration of PMNs. Thus, the objective of this study was to determine the functional domain of SipA that regulates this signalling event. SipA was divided into two fragments: the SipAb C-terminal fragment(426-684) (259 AA), which binds actin, and the SipAa fragment(2-425) (424 AA), which a role has yet to be described. In both in vitro and in vivo models of S. typhimurium-induced intestinal inflammation the SipAa fragment exhibited a profound ability to induce PMN transmigration, whereas the SipAb actin-binding domain failed to induce PMN transmigration. Subsequent mapping of the SipAa domain identified a 131-amino-acid region (SipAa3(294-424)) responsible for modulating PMN transepithelial migration. Interestingly, neither intracellular translocation nor actin association of SipA was necessary for its ability to induce PMN transepithelial migration. As these results indicate SipA has at least two separate functional domains, we speculate that during infection S. typhimurium requires delivery of SipA to both extracellular and intracellular spaces to maximize pro-inflammatory responses and mechanisms of bacterial invasion.  相似文献   

11.
Flagellin is the major cytokine-releasing factor when Salmonella enterica serovar Typhimurium (S. Typhimurium) infects intestinal epithelial cells. In this work it is shown that curli, an adhesive proteinaceous surface component of Enterobacteriaceae involved in biofilm formation of S. Typhimurium and Escherichia coli strains can bind flagellin and thus elicit an immune response by the intestinal epithelial cell line HT-29.  相似文献   

12.
Neutrophils are innate immune cells that counter pathogens by many mechanisms, including release of antimicrobial proteins such as calprotectin to inhibit bacterial growth. Calprotectin sequesters essential micronutrient metals such as zinc, thereby limiting their availability to microbes, a process termed nutritional immunity. We find that while calprotectin is induced by neutrophils during infection with the gut pathogen Salmonella Typhimurium, calprotectin-mediated metal sequestration does not inhibit S. Typhimurium proliferation. Remarkably, S. Typhimurium overcomes calprotectin-mediated zinc chelation by expressing a high affinity zinc transporter (ZnuABC). A S. Typhimurium znuA mutant impaired for growth in the inflamed gut was rescued in the absence of calprotectin. ZnuABC was also required to promote the growth of S. Typhimurium over that of competing commensal bacteria. Thus, our findings indicate that Salmonella thrives in the inflamed gut by overcoming the zinc sequestration of calprotectin and highlight the importance of zinc acquisition in bacterial intestinal colonization.  相似文献   

13.
The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown of Albatross in polarized cells causes a disappearance of key components of the AJC at cell–cell borders and keratin filament reorganization. Lateral proteins E-cadherin and desmoglein 2 were mislocalized even on the apical side. Although Albatross promotes localization of Par3 to the AJC, Par3 and ezrin are still retained at the apical surface in Albatross knockdown cells, which retain intact microvilli. Analysis of keratin-deficient epithelial cells revealed that keratins are required to stabilize the Albatross protein, thus promoting the formation of AJC. We propose that keratins and the keratin-binding protein Albatross are important for epithelial cell polarization.  相似文献   

14.
Mahon MJ 《Cellular signalling》2011,23(10):1659-1668
The parathyroid hormone 1 receptor (PTH1R), a primary regulator of mineral ion homeostasis, is expressed on both the apical and basolateral membranes of kidney proximal tubules and in the LLC-PK1 kidney cell line. In LLC-PK1 cells, apical PTH1R subpopulations are far more effective at signaling via phospholipase (PLC) than basolateral counterparts, revealing the presence of compartmental signaling. Apical PTH1R localization is dependent upon direct interactions with ezrin, an actin-membrane cross-linking scaffold protein. Ezrin undergoes an activation process that is dependent upon phosphorylation and binding to phosphatidylinositol-4,5-bisphosphate (PIP2), a lipid that is selectively concentrated to apical surfaces of polarized epithelia. Consistently, the intracellular probe for PIP2, GFP-PLCδ1-PH, localizes to the apical membranes of LLC-PK1 cells, directly overlapping ezrin and PTH1R expression. Activation of the apical PTH1R shifts the GFP-PLCδ1-PH probe from the apical membrane to the cytosol and basolateral membranes, reflecting domain-specific activation of PLC and hydrolysis of PIP2. This compartmental signaling is likely due to the polarized localization of PIP2, the substrate for PLC. PIP2 degradation using a membrane-directed phosphatase shifts ezrin localization to the cytosol and induces ezrin de-phosphorylation, processes consistent with inactivation. PIP2 degradation also shifts PTH1R expression from brush border microvilli to basolateral membranes and markedly blunts PTH-elicited activation of the MAPK pathway. Transient expression of ezrin in HEK293 cells shifts PTH1R expression from the plasma membrane to microvilli-like surface projections that also contain PIP2. As a result, ezrin enhances PTH mediated activation of the PLC pathway in this cell model with increasing total receptor surface expression. Collectively, these findings demonstrate that the apical segregation of PIP2 to the apical domains not only promotes the activation of ezrin and the subsequent formation of the PTH1R containing scaffold, but also ensures the presence of ample substrate for propagating the PLC pathway.  相似文献   

15.
We have previously shown that adenosine is formed in the intestinal lumen during active inflammation from neutrophil-derived 5'-AMP. Acting through the adenosine A2b receptor (A2bR), the luminally derived adenosine induces vectorial chloride secretion and a polarized secretion of interleukin-6 to the intestinal lumen. Although some G protein-coupled receptors interact with anchoring or signaling molecules, not much is known in this critical area for the A2bR. We used the model intestinal epithelial cell line, T84, and Caco2-BBE cells stably transfected with GFP-A2b receptor to study the intestinal A2bR. The A2bR is present in both the apical and basolateral membranes of intestinal epithelia. Apical or basolateral stimulation of the A2bR induces recruitment of the receptor to the plasma membrane and caveolar fractions. The A2bR co-immunoprecipitates with E3KARP and ezrin upon agonist stimulation. Ezrin interacts with E3KARP and PKA and the interaction between ezrin and E3KARP is enhanced by agonist stimulation. Our data suggest that the A2bR is recruited to the plasma membrane upon apical or basolateral agonist stimulation and interacts with E3KARP and ezrin. We speculate that such an interaction may not only anchor the A2bR to the plasma membrane but may also function to stabilize the receptor in a signaling complex in the plasma membrane.  相似文献   

16.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

17.
The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.  相似文献   

18.
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.  相似文献   

19.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

20.
The human multidrug resistance protein 2 (MRP2, symbol ABCC2) is a polytopic membrane glycoprotein of 1545 amino acids which exports anionic conjugates across the apical membrane of polarized cells. A chimeric protein composed of C-proximal MRP2 and N-proximal MRP1 localized to the apical membrane of polarized Madin-Darby canine kidney cells (MDCKII) indicating involvement of the carboxy-proximal part of human MRP2 in apical sorting. When compared to other MRP family members, MRP2 has a seven-amino-acid extension at its C-terminus with the last three amino acids (TKF) comprising a PDZ-interacting motif. In order to analyze whether this extension is required for apical sorting of MRP2, we generated MRP2 constructs mutated and stepwise truncated at their C-termini. These constructs were fused via their N-termini to green fluorescent protein (GFP) and were transiently transfected into polarized, liver-derived human HepG2 cells. Quantitative analysis showed that full-length GFP-MRP2 was localized to the apical membrane in 73% of transfected, polarized cells, whereas it remained on intracellular membranes in 27% of cells. Removal of the C-terminal TKF peptide and stepwise deletion of up to 11 amino acids did not change this predominant apical distribution. However, apical localization was largely impaired when GFP-MRP2 was C-terminally truncated by 15 or more amino acids. Thus, neither the PDZ-interacting TKF motif nor the full seven-amino-acid extension were necessary for apical sorting of MRP2. Instead, our data indicate that a deletion of at least 15 C-terminal amino acids impairs the localization of MRP2 to the apical membrane of polarized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号