首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.  相似文献   

2.
The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.  相似文献   

3.
Mutations in distal S6 were shown to significantly alter the stability of the open state of Ca(V)2.3 (Raybaud, A., Baspinar, E. E., Dionne, F., Dodier, Y., Sauvé, R., and Parent, L. (2007) J. Biol. Chem. 282, 27944-27952). By analogy with K(V) channels, we tested the hypothesis that channel activation involves electromechanical coupling between S6 and the S4S5 linker in Ca(V)2.3. Among the 11 positions tested in the S4S5 linker of domain II, mutations of the leucine residue at position 596 were found to destabilize significantly the closed state with a -50 mV shift in the activation potential and a -20 mV shift in its charge-voltage relationship as compared with Ca(V)2.3 wt. A double mutant cycle analysis was performed by introducing pairs of glycine residues between S4S5 and S6 of Domain II. Strong coupling energies (ΔΔG(interact) > 2 kcal mol(-1)) were measured for the activation gating of 12 of 39 pairs of mutants. Leu-596 (IIS4S5) was strongly coupled with distal residues in IIS6 from Leu-699 to Asp-704. In particular, the double mutant L596G/I701G showed strong cooperativity with a ΔΔG(interact) ≈6 kcal mol(-1) suggesting that both positions contribute to the activation gating of the channel. Altogether, our results highlight the role of a leucine residue in S4S5 and provide the first series of evidence that the IIS4S5 and IIS6 regions are energetically coupled during the activation of a voltage-gated Ca(V) channel.  相似文献   

4.
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. An emerging feature of several Kir channels is that they are regulated by cholesterol. However, the mechanism by which cholesterol affects channel function is unclear. Here we show that mutations of two distant Kir2.1 cytosolic residues, Leu-222 and Asn-251, form a two-way molecular switch that controls channel modulation by cholesterol and affects critical hydrogen bonding. Notably, these two residues are linked by a residue chain that continues from Asn-251 to connect adjacent subunits. Furthermore, our data indicate that the same switch also regulates the sensitivity of the channels to phosphatidylinositol 4,5-bisphosphate, a phosphoinositide that is required for activation of Kir channels. Thus, although cholesterol and phosphatidylinositol 4,5-bisphosphate do not interact with the same region of Kir2.1, these different modulators induce a common gating pathway of the channel.  相似文献   

5.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.  相似文献   

6.
To identify the residues in the carboxyl-terminal region 260-299 of human apolipoprotein E (apoE) that contribute to hypertriglyceridemia, two sets of conserved, hydrophobic amino acids between residues 261 and 283 were mutated to alanines, and recombinant adenoviruses expressing these apoE mutants were generated. Adenovirus-mediated gene transfer of apoE4-mut1 (apoE4 (L261A, W264A, F265A, L268A, V269A)) in apoE-deficient mice (apoE(-/-)) corrected plasma cholesterol levels and did not cause hypertriglyceridemia. In contrast, gene transfer of apoE4-mut2 (apoE4 (W276A, L279A, V280A, V283A)) did not correct hypercholesterolemia and induced mild hypertriglyceridemia. ApoE-induced hyperlipidemia was corrected by co-infection with a recombinant adenovirus expressing human lipoprotein lipase. Both apoE4 mutants caused only a small increase in hepatic very low density lipoprotein-triglyceride secretion. Density gradient ultracentrifugation analysis of plasma and electron microscopy showed that wild-type apoE4 and apoE4-mut2 displaced apoA-I from the high density lipoprotein (HDL) region and promoted the formation of discoidal HDL, whereas the apoE4-mut1 did not displace apoA-I from HDL and promoted the formation of spherical HDL. The findings indicate that residues Leu-261, Trp-264, Phe-265, Leu-268, and Val-269 of apoE are responsible for hypertriglyceridemia and also interfere with the formation of HDL. Substitutions of these residues by alanine provide a recombinant apoE form with improved biological functions.  相似文献   

7.
Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.  相似文献   

8.
Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1–S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5–S6) is surrounded by four voltage sensor domains (S1–S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5L) and S6 C terminus (S6T). From these data, we hypothesized that S4S5L behaves like a ligand specifically interacting with S6T and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5L and S6T of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5L peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5L peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6T, consistent with S4S5L binding to S6T. Val254 in S4S5L is known to contact Leu353 in S6T when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5L binding to S6T. Our results suggest a mechanistic model in which S4S5L acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5L away from S6T, allowing channel opening.  相似文献   

9.
In Shaker K(+) channels depolarization displaces outwardly the positively charged residues of the S4 segment. The amount of this displacement is unknown, but large movements of the S4 segment should be constrained by the length and flexibility of the S3-S4 linker. To investigate the role of the S3-S4 linker in the ShakerH4Delta(6-46) (ShakerDelta) K(+) channel activation, we constructed S3-S4 linker deletion mutants. Using macropatches of Xenopus oocytes, we tested three constructs: a deletion mutant with no linker (0 aa linker), a mutant containing a linker 5 amino acids in length, and a 10 amino acid linker mutant. Each of the three mutants tested yielded robust K(+) currents. The half-activation voltage was shifted to the right along the voltage axis, and the shift was +45 mV in the case of the 0 aa linker channel. In the 0 aa linker, mutant deactivation kinetics were sixfold slower than in ShakerDelta. The apparent number of gating charges was 12.6+/-0.6 e(o) in ShakerDelta, 12.7+/-0.5 in 10 aa linker, and 12.3+/-0.9 in 5 aa linker channels, but it was only 5.6+/-0.3 e(o) in the 0 aa linker mutant channel. The maximum probability of opening (P(o)(max)) as measured using noise analysis was not altered by the linker deletions. Activation kinetics were most affected by linker deletions; at 0 mV, the 5 and 0 aa linker channels' activation time constants were 89x and 45x slower than that of the ShakerDelta K(+) channel, respectively. The initial lag of ionic currents when the prepulse was varied from -130 to -60 mV was 0.5, 14, and 2 ms for the 10, 5, and 0 aa linker mutant channels, respectively. These results suggest that: (a) the S4 segment moves only a short distance during activation since an S3-S4 linker consisting of only 5 amino acid residues allows for the total charge displacement to occur, and (b) the length of the S3-S4 linker plays an important role in setting ShakerDelta channel activation and deactivation kinetics.  相似文献   

10.
A series of N-aryl-2-phenyl-hydrazinecarbothioamides have been investigated as possible inhibitors of tyrosinase, an enzyme involved in the development of melanomas. The hydrazinecarbothioamides 1–6 were synthesized from the reaction between phenylhydrazine and isothiocyanates, for which three different methods have been employed, namely stirring at room temperature, by microwave irradiation or by mechanochemical grinding. Quantitative yields were obtained for the later technique. Compound 4 showed the best value for tyrosinase inhibition (IC50 = 22.6 µM), which occurs through an uncompetitive mechanism. Molecular docking results suggested that 4 can interact via T-stacking with the substrate L-DOPA and via hydrogen bonding and hydrophobic forces with the amino acid residues Ala-79, His-243, Val-247, Phe-263, Val-282, and Glu-321. The interaction between human serum albumin (HSA) and compound 4 occurs through a ground state association and does not perturb the secondary structure of the albumin as well as the microenvironment around Tyr and Trp residues. The binding is spontaneous, moderate and occurs mainly in the Sudlow’s site I. Molecular docking results suggested hydrogen bonding, hydrophobic and electrostatic interactions as the main binding forces between the compound 4 and the amino acid residues Lys-198, Trp-214, Glu-449, Leu-452, and Leu-480.  相似文献   

11.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.  相似文献   

12.
In vivo, KCNQ1 α-subunits associate with the β-subunit KCNE1 to generate the slowly activating cardiac potassium current (I(Ks)). Structurally, they share their topology with other Kv channels and consist out of six transmembrane helices (S1-S6) with the S1-S4 segments forming the voltage-sensing domain (VSD). The opening or closure of the intracellular channel gate, which localizes at the bottom of the S6 segment, is directly controlled by the movement of the VSD via an electromechanical coupling. In other Kv channels, this electromechanical coupling is realized by an interaction between the S4-S5 linker (S4S5(L)) and the C-terminal end of S6 (S6(T)). Previously we reported that substitutions for Leu(353) in S6(T) resulted in channels that failed to close completely. Closure could be incomplete because Leu(353) itself is the pore-occluding residue of the channel gate or because of a distorted electromechanical coupling. To resolve this and to address the role of S4S5(L) in KCNQ1 channel gating, we performed an alanine/tryptophan substitution scan of S4S5(L). The residues with a "high impact" on channel gating (when mutated) clustered on one side of the S4S5(L) α-helix. Hence, this side of S4S5(L) most likely contributes to the electromechanical coupling and finds its residue counterparts in S6(T). Accordingly, substitutions for Val(254) resulted in channels that were partially constitutively open and the ability to close completely was rescued by combination with substitutions for Leu(353) in S6(T). Double mutant cycle analysis supported this cross-talk indicating that both residues come in close contact and stabilize the closed state of the channel.  相似文献   

13.
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.  相似文献   

14.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

15.
The Escherichia coli TolC, composed of 471 amino-acid residues, functions as a channel tunnel in the transport of various molecules across the outer membrane. We found previously that Leu-412, the 60th amino-acid residue from the carboxy terminal end, was crucial to the transport activity of TolC. Leu-412 is located in a domain which protrudes from the main body of TolC into the periplasm. Subsequent study indicated that the hydrophobicity generated by Leu-412 played an important role in the activity of TolC (H. Yamanaka, T. Nomura, N. Morisada, S. Shinoda, and K. Okamoto, Microb. Pathog. 33: 81-89, 2002). We predicted that other hydrophobic amino-acid residues around Leu-412 were also involved in the expression of the activity of TolC. To test this possibility, we substituted several hydrophobic residues around Leu-412, (Leu-3, Val-6, Leu-212, Leu-213, Leu-223, and Leu-224), with serine and examined the activity of these mutant TolCs. The result showed that Leu-3 is involved in the activity of TolC, but the other residues are not. The involvement of Leu-3 was confirmed by the residue deletion experiment. A subsequent point-mutational analysis of the residue showed that a hydrophobic side chain is required at position 3 for TolC to express its activity. As the distance between the alpha-carbons of Leu-3 and Leu-412 is just 7.45 angstroms, hydrophobic interaction between the two leucine residues might be involved in the activity of TolC.  相似文献   

16.
The two cytoplasmic linkers connecting segment S4 and segment S5 (S4-S5 linker) of both domain III (III/S4-S5) and IV (IV/S4-S5) of the sodium channel alpha-subunit are considered to work as a hydrophobic receptor for the inactivation particle because of the three hydrophobic amino acids of Ile-Phe-Met (IFM motif) in the III-IV linker of the sodium channel alpha-subunit. To date, the solution structures of the peptides related to III/S4-S5 (MP-D3: A1325-M1338) and IV/S4-S5 (MP-D4: T1648-L1666) of human brain sodium channels have been investigated using CD and (1)H NMR spectroscopies. SDS micelles were employed as a solvent. The micelles mimic either biological membranes or the interior of a protein and can be a relevant environment at the inactivated state of the channels. It was found that the secondary structures of both MP-D3 and MP-D4 assume alpha-helical conformations around the N-terminal half-side of the sequences, i.e. the residues between V1326 and L1331 in MP-D3 and between L1650 and S1656 in MP-D4. Residue A1329 in MP-D3, which is considered to interact with F1489 of the IFM motif, was found to be located within the alpha-helix. Residues F1651, M1654, M1655, L1657 and A1669 in MP-D4, which also play an important role in inactivation, formed a hydrophobic cluster on one side of the helix. This cluster was concluded to interact with the hydrophobic cluster due to the III-IV linker before the inactivation gate closes.  相似文献   

17.
Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.  相似文献   

18.
Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.  相似文献   

19.
Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.  相似文献   

20.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号