共查询到20条相似文献,搜索用时 15 毫秒
1.
Large ecological barriers such as oceans and deserts have considerablyshaped the migratory strategies of birds. The ecological barriersposed by the Alps, the Mediterranean Sea, and the Sahara seemto prevent most long-distance migrants from flying on a directsouthward course from Europe to Africa. Migratory routes towardsouthwest and southeast prevail. These two flyways differ withrespect to topography, refueling possibilities, and wind conditions.Aiming at a better understanding of the evolution of both flywaysin spite of differing conditions, we studied potential survivalof passerine birds on their first autumn migration from northernEurope to tropical Africa by means of a computer simulation.Considering real wind conditions at 850 mb (approximately 1500m above sea level), the survival rates of birds with southeasterly(SE) migratory directions were much higher than those of birdswith southwesterly (SW) directions. With the possibility tochoose the altitude (from four levels) with the most favorablewind, both SE and SW migrants had similar high survival, butonly with refueling opportunities in northwest (NW) Africa forSW migrants. Our results suggest that the southwestern flywaydepends on the selection of days, but especially altitudes,with favorable wind conditions and on refueling opportunitiesin NW Africa. The SE flyway is privileged by the frequent favorablewind conditions for crossing the eastern Mediterranean Sea andthe Egyptian desert, where refueling sites are almost absent.Both autumn migration routes would be unlikely without windassistance. 相似文献
2.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons. 相似文献
3.
Body mass of six long-distance migrant passerine species along the autumn migration route 总被引:2,自引:0,他引:2
Summary We analysed body mass and moult data of six passerine species along their autumn migration route from northern Europe to North Africa and derived hypothetical models of the organisation of their migration in terms of fuel store accumulation. We analysed data of 46,541 first-year birds from 34 trapping sites, sampled in a network of collaborating European and African ringing stations. After accounting for effects of time of day and size, there were marked differences between the six species examined in the change of body mass along the migration route and in the timing of moult. Garden Warblers (Sylvia borin) and Pied Flycatchers (Ficedula hypoleuca) underwent their postjuvenile moult prior to migration and increased their average body mass along the migration route. Sedge Warblers (Acrocephalus schoenobaenus) also increased body mass towards the south, but started the migration bout without further refuelling well before the Sahara and moulted mainly in the wintering grounds. Reed Warblers (Acrocephalus scirpaceus) and Whitethroats (Sylvia communis) migrated while still moulting and did not increase average body mass towards south. They accumulated the energy needed to fly over the Sahara just before it. Spotted Flycatchers (Muscicapa striata) behaved in the same way, but contrary to Reed Warblers and Whitethroats they did not accumulate much fat stores in North Africa, which might urge them to stop and fuel up regularly in the Sahara. In the course of the season average body mass of all species increased slightly, which enabled them to migrate faster. In general, average body mass of first-year birds in northern and central Europe during the migration period was comparable to that of adults during breeding.
Körpermassen von sechs Arten von Langstreckenziehern entlang des Herbstzugweges
Zusammenfassung Wir analysierten Körpermassen- und Mauserdaten von sechs Singvogelarten auf dem Herbstzug entlang ihres Zugweges von Nordeuropa bis Nordafrika. Die Körpermassen von 46 541 diesjährigen Vögeln, die auf 34 Beringungsstationen im Rahmen eines internationalen Projektes gesammelt wurden, sind die Grundlage dieser Untersuchung. Neben der Entwicklung der Körpermassen entlang des Zugweges untersuchten wir den Einfluss der Mauser, des Fangdatums, der Tageszeit und der Körpergröße auf die Körpermasse. Mausernde Vögel waren schwerer als nichtmausernde mit der gleichen Fettmenge. Die Körpermasse nahm im Laufe der Saison und im Verlauf des Tages zu. Große Vögel (mit einer längeren 8. Handschwinge) waren schwerer als kleine. Gartengrasmücken (Sylvia borin) und Trauerschnäpper (Ficedula hypoleuca) wurden entlang des Zugweges kontinuierlich schwerer. Beide Arten machten die Jugendteilmauser hauptsächlich noch im Brutgebiet durch. Schilfrohrsänger (Acrocephalus schoenobaenus) wurden nach Süden ebenfalls etwas schwerer, aber sie begannen mit einem Reiseabschnitt ohne weiteren Fettaufbau schon in Mitteleuropa und mauserten ihr Kleingefieder hauptsächlich erst in Afrika. Die Körpermassen von Teichrohrsängern (Acrocephalus scirpaceus) und Dorngrasmücken (Sylvia communis) blieben nach Süden weitgehend konstant. Beide Arten lagerten die nötigen Energiereserven zum Überfliegen der Sahara erst kurz davor an. Sie trennten Jugendteilmauser und Zug nicht vollständig. Ähnlich verhielten sich Grauschnäpper (Muscicapa striata), doch im Gegensatz zu den zwei vorherigen Arten, wurden sie auch im Mittelmeergebiet nicht wesentlich fetter. Sie scheinen daher regelmässig in der Wüste zu rasten und zu fressen.相似文献
4.
The exploration of animal migration has entered a new era with individual-based tracking during multiple years. Here, we investigated repeated migratory journeys of a long-distance migrating bird, the marsh harrier Circus aeruginosus, in order to analyse the variation within and between individuals with respect to routes and timing. We found that there was a stronger individual repeatability in time than in space. Thus, the annual timing of migration varied much less between repeated journeys of the same individual than between different individuals, while there was considerable variation in the routes of the same individual on repeated journeys. The overall contrast in repeatability between time and space was unexpected and may be owing to strong endogenous control of timing, while short-term variation in environmental conditions (weather and habitat) might promote route flexibility. The individual variation in migration routes indicates that the birds navigate mainly by other means than detailed route recapitulation based on landmark recognition. 相似文献
5.
Sexually selected traits are limited by selection against those traits in other fitness components, such as survival. Thus, sexual selection favouring large size in males should be balanced by higher mortality of larger males. However, evidence from red-winged blackbirds (Agelaius phoeniceus) indicates that large males survive better than small males. A survival advantage to large size could result from males migrating north in early spring, when harsh weather favours large size for energetic reasons. From this hypothesis we predicted that, among species, sex differences in body size should be correlated with sex differences in timing of spring migration. The earlier males migrate relative to females, the larger they should be relative to females. We tested this prediction using a comparative analysis of data collected from 30 species of passerine birds captured on migration. After controlling for social mating system, we found that sexual size dimorphism and difference in arrival dates of males and females were significantly positively correlated. This result is consistent with the hypothesis that selection for survival ability promotes sexual size dimorphism (SSD), rather than opposes SSD as is the conventional view. If both natural selection and sexual selection favour large adult males, then limits to male size must be imposed before males become adults. 相似文献
6.
Cynthia Carey 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1534):3321-3330
Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past. 相似文献
7.
The migration of cereal aphids and the time of their arrival on winter cereal crops in autumn and spring are of particular importance for plant disease (e.g. barley yellow dwarf virus infection) and related yield losses. In order to identify days with migration potentials in autumn and spring, suction trap data from 29 and 45 case studies (locations and years), respectively, were set‐off against meteorological parameters, focusing on the early immigration periods in autumn (22 September to 1 November) and spring (1 May to 9 June). The number of cereal aphids caught in a suction trap increased with increasing temperature, global radiation and duration of sunshine and decreased with increasing precipitation, relative humidity and wind speed. According to linear regression analyses, the temperature, global radiation and wind speed were most frequently and significantly associated with migration, suggesting that they have a major impact on flight activity. For subsequent model development, suction trap catches from different case studies were pooled and binarily classified as days with or without migration as defined by a certain number of migrating cereal aphids. Linear discriminant analyses of several predictor variables (assessed during light hours of a given day) were then performed based on the binary response variables. Three models were used to predict days with suction trap catches ≥1, ≥4 or ≥10 migrating cereal aphids in autumn. Due to the predominance of Rhopalosiphum padi individuals (99.3% of total cereal aphid catch), no distinction between species (R. padi and Sitobion avenae) was made in autumn. As the suction trap catches were lower and species dominance changed in spring, three further models were developed for analysis of all cereal aphid species, R. padi only, and Metopolophium dirhodum and S. avenae combined in spring. The empirical, cross‐classification and receiver operating characteristic analyses performed for model validation showed different levels of prediction accuracy. Additional datasets selected at random before model construction and parameterization showed that predictions by the six migration models were 33–81% correct. The models are useful for determining when to start field evaluations. Furthermore, they provide information on the size of the migrating aphid population and, thus, on the importance of immigration for early aphid population development in cereal crops in a given season. 相似文献
8.
9.
ABSTRACT Migration represents one of the most vulnerable stages of a migrant's life cycle, but the strategies and stopover sites used by Neotropical migrants in Central America are not well known. We carried out constant‐effort mist netting and conducted censuses along transects during one autumn (2007) and one spring (2008) migration in northeast Belize. We recorded more landbird migrant species in autumn (63) than in spring (54), and spring abundance was >25% lower for 88% of transient species. These differences in presence and abundance indicate that routes and stopover strategies vary between seasons and species. In autumn, fuel loads, calculated as any increase in mass above lean body mass (LBM), were generally small (mean = 5.9% LBM and 10.1% LBM for wintering and transient species, respectively) and fuel deposition rates and minimum stopover durations suggest that some individuals replenished energy reserves in our study area. Variation in autumn fuel loads meant that some individuals had reserves sufficient for flights >1000 km. Fuel loads were larger in spring for 16 of 17 species, and the mean spring fuel load for transient species (32.5% LBM) was sufficient for a flight from northeast Belize to North America without refueling. The similarity in spring passage times between northeast Belize and the Gulf Coast of the United States also suggests that energy reserves were not replenished in northeast Belize prior to crossing the Gulf of Mexico. We hypothesize that sufficient energy reserves are accumulated during spring stopovers in northern South America or elsewhere in Mesoamerica to allow migrants to fly directly to North America without refueling. 相似文献
10.
Sara R. Morris 《Journal of Field Ornithology》2012,83(4):412-419
ABSTRACT Stopover‐site quality has often been assessed using changes in the body mass of migrants estimated from individuals recaptured on subsequent days or using regression methods. We compared estimates of mass change using these two techniques to estimates of mass change determined from birds recaptured on the same day. Using spring and fall banding data collected on Appledore Island, Maine, from 1990–2007, we examined body mass changes of the five most common species. Over this period, 18,954 individuals of these five species were captured and banded, with 11.6% of birds recaptured at least 1 d after initial capture and 3.1% recaptured on the same day. Using both regression and same‐day recapture methods, all five species had positive hourly mass gains during fall migration; results were mixed for the subsequent‐day analysis method. Trends were less consistent during spring migration. Using all three methods of estimating mass change, Red‐eyed Vireos (Vireo olivaceus) lost mass, American Redstarts (Setophaga ruticilla) and Northern Waterthrushes (Parkesia noveboracensis) gained mass, and results for Yellow‐bellied Flycatchers (Empidonax flaviventris), and Black‐and‐white Warblers (Mniotilta varia) varied with method. We found similar trends in mass change using the same‐day recapture and regression methods. However, we found lower mean mass gain for most species using the same‐day recapture method, suggesting that there may be a short‐term capture and handling effect. Our results provide additional support for the use of regression models to compare changes in mass of migrating songbirds at stopover sites. 相似文献
11.
Changes in the timing of spring and autumn migration in North American migrant passerines during a period of global warming 总被引:1,自引:0,他引:1
ALEXANDER M. MILLS 《Ibis》2005,147(2):259-269
Butler (2003) used first arrival dates (FADs) of 103 migrant birds in northeastern USA and found that both long-distance migrants (LDMs; wintering south of the USA) and short-distance migrants (SDMs; wintering in the southern USA) arrived earlier in the second half of the 20th century than they had in the first, consistent with scenarios of global warming; the trend was stronger in SDMs. Using FADs to characterize migration systems can be problematic because they are data from one tail of a distribution, they comprise a mostly male population and they may not correlate well with the balance of the migration period. FADs also provide no information about autumn migration. This paper uses a banding dataset from Long Point Bird Observatory, Ontario, for 14 passerines for a period of global warming (1975–2000), taking these issues into account. The data were filtered to minimize effects of unequal netting effort (147 491 resulting records), and the passage dates then calculated in each season of each year for the 1st, 2nd and 3rd quartiles for regression analysis. Only two of 13 species analysed in the spring showed significantly earlier passage times, although the overall trend was towards earlier spring migration, especially among SDMs. Autumn responses were more prevalent, however, and in some cases more dramatic with six of 13 species showing delayed migration (four SDMs, two LDMs). Two LDMs exhibited earlier autumn migration. Where earlier spring migration occurred, both sexes appeared to contribute to the change. Where delayed migration occurred in autumn, both sexes and both adults and hatch-year birds appeared to contribute in at least some cases. The spring FAD results are consistent with those of Butler, but when the whole migration is considered, change is far from universal in spring and is in fact more substantial and complex in autumn. 相似文献
12.
Coinciding with increasing spring temperatures in Europe, many migrants have advanced their arrival or passage times over
the last decades. However, some species, namely long-distance migrants, could be constrained in their arrival dates due to
their largely inherited migratory behaviour and thus a likely inflexibility in their response to exogenous factors. To examine
this hypothesis for pied flycatchers (Ficedula hypoleuca), we tested the effects of the temperature regimes along their migration routes north of the Sahara on their arrival times
in central Europe. To do so, we developed a site-independent large-scale approach based on temperature data available on the
Internet. Temperature regimes along the migration routes of pied flycatchers within Europe convincingly correlate with their
first arrival times. It can be concluded that the progression of spring migration in this species is strongly influenced by
temperature en route. Because of the recent inconsistent climatic changes in various parts of Europe, we hypothesize that
individuals migrating along different routes will be unequally affected by further climatic changes. 相似文献
13.
Like many other migratory birds, the black-throated blue warbler (Dendroica caerulescens) shows pronounced differences in migratory behaviour and other traits between populations: birds in the southern part of the breeding range have darker plumage and migrate to the eastern Caribbean during the winter, whereas those in the north have lighter plumage and migrate to the western Caribbean. We examined the phylogeography of this species, using samples collected from northern and southern populations, to determine whether differentiation between these populations dates to the Pleistocene or earlier, or whether differences in plumage and migratory behaviour have arisen more recently. We analysed variation at 369 bp of the mitochondrial control region domain I and also at seven nuclear microsatellites. Analyses revealed considerable genetic variation, but the vast majority of this variation was found within rather than between populations, and there was little differentiation between northern and southern populations. Phylogeographic analyses revealed a very shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution, all indicative of a recent range expansion from a single refugium. Coalescent modelling approaches also indicated a recent common ancestor for the entire group of birds analysed, no split between northern and southern populations, and high levels of gene flow. These results show that Pleistocene or earlier events have played little role in creating differences between northern and southern populations, suggesting that migratory and other differences between populations have arisen very recently. The implications of these results for the evolution of migration and defining taxonomic groups for conservation efforts are discussed. 相似文献
14.
The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models 下载免费PDF全文
Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration. 相似文献
15.
Caroline Van Hemert Colleen M. Handel John E. Blake Rhonda M. Swor Todd M. O'Hara 《Journal of morphology》2012,273(2):226-240
The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard‐cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard‐cornified structures. In this study, we examine the beak and claw of the Black‐capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high‐magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard‐cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard‐cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black‐capped Chickadees and other wild passerine species. © 2011 Wiley Periodicals, Inc. 相似文献
16.
17.
Is there a connection between weather at departure sites,onset of migration and timing of soaring‐bird autumn migration in Israel? 总被引:1,自引:0,他引:1
Judy Shamoun-Baranes Emiel van Loon Dan Alon Pinhas Alpert Yoram Yom-Tov Yossi Leshem 《Global Ecology and Biogeography》2006,15(6):541-552
Aims Different aspects of soaring‐bird migration are influenced by weather. However, the relationship between weather and the onset of soaring‐bird migration, particularly in autumn, is not clear. Although long‐term migration counts are often unavailable near the breeding areas of many soaring birds in the western Palaearctic, soaring‐bird migration has been systematically monitored in Israel, a region where populations from large geographical areas converge. This study tests several fundamental hypotheses regarding the onset of migration and explores the connection between weather, migration onset and arrival at a distant site. Location Globally gridded meteorological data from the breeding areas in north‐eastern Europe were used as predictive variables in relation to the arrival of soaring migrants in Israel. Methods Inverse modelling was used to study the temporal and spatial influence of weather on initiation of migration based on autumn soaring‐bird migration counts in Israel. Numerous combinations of migration duration and temporal influence of meteorological variables (temperature, sea‐level pressure and precipitable water) were tested with different models for meteorological sensitivity. Results The day of arrival in Israel of white storks, honey buzzards, Levant sparrowhawks and lesser spotted eagles was significantly and strongly related to meteorological conditions in the breeding area days or even weeks before arrival in Israel. The cumulative number of days or cumulative value above or below a meteorological threshold performed significantly better than other models tested. Models provided reliable estimates of migration duration for each species. Main conclusions The meteorological triggers of migration at the breeding grounds differed between species and were related to deteriorating living conditions and deteriorating migratory flight conditions. Soaring birds are sensitive to meteorological triggers at the same period every year and their temporal response to weather appears to be constrained by their annual routine. 相似文献
18.
Explanations for the wide variety of seasonal migration patterns of animals all carry the assumption that migration is costly and that this cost increases with migration distance. Although in some studies, the relationships between migration distance and breeding success or annual survival are established, none has investigated whether mortality during the actual migration increases with migration distance. Here, we compared seasonal survival between Eurasian spoonbills (Platalea leucorodia leucorodia) that breed in The Netherlands and migrate different distances (ca 1000, 2000 and 4500 km) to winter in France, Iberia and Mauritania, respectively. On the basis of resightings of individually marked birds throughout the year between 2005 and 2012, we show that summer, autumn and winter survival were very high and independent of migration distance, whereas mortality during spring migration was much higher (18%) for the birds that wintered in Mauritania, compared with those flying only as far as France (5%) or Iberia (6%). As such, this study is the first to show empirical evidence for increased mortality during some long migrations, likely driven by the presence of a physical barrier (the Sahara desert) in combination with suboptimal fuelling and unfavourable weather conditions en route. 相似文献
19.
Caleb T. Hasler Steven J. Cooke Scott G. Hinch Esther Guimond Michael R. Donaldson Brent Mossop David A. Patterson 《Journal of thermal biology》2012
By combining biotelemetry with animal-borne thermal loggers, we re-created the thermal histories of 21 summer-run Chinook salmon (Oncorhynchus tshawytscha) migrating in the Puntledge River, a hydropower impacted river system on Vancouver Island, British Columbia, Canada. Daily maximum water temperatures in the Puntledge River during the summer-run adult Chinook salmon migration and residency period frequently exceeded 21 °C, a value that has been observed to elicit behavioral thermoregulation in other Chinook salmon populations. We therefore compared river temperatures to body temperatures of 16 fish that migrated through the river to understand if cool-water refuge was available and being used by migrants. In addition, we used thermal histories from fish and thermal loggers distributed in the river to model the effect of thermal habitat on energy density using a bioenergetics model. In general, we found no evidence that cool-water refuge existed in the river, suggesting that there is no opportunity for fish to behaviorally thermoregulate during upriver migration through the regulated portion of the river. Of the thermal histories used in the bioenergetics model, fish that reached an upstream lake were able to access cooler, deeper waters, which would have reduced energy consumption compared to fish that only spent time in the warmer river. Consequently, the Puntledge River water temperatures are likely approaching and in some cases exceeding the thermal limits of the summer-run Chinook salmon during the spawning migration. Further warming may cause more declines in the stock. 相似文献
20.
Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird 下载免费PDF全文
The timing of annual life‐history events affects survival and reproduction of all organisms. A changing environment can perturb phenological adaptations and an important question is if populations can evolve fast enough to track the environmental changes. Yet, little is known about selection and evolutionary potential of traits determining the timing of crucial annual events. Migratory species, which travel between different climatic regions, are particularly affected by global environmental changes. To increase our understanding of evolutionary potential and selection of timing traits, we investigated the quantitative genetics of arrival date at the breeding ground using a multigenerational pedigree of a natural great reed warbler (Acrocephalus arundinaceus) population. We found significant heritability of 16.4% for arrival date and directional selection for earlier arrival in both sexes acting through reproductive success, but not through lifespan. Mean arrival date advanced with 6 days over 20 years, which is in exact accordance with our predicted evolutionary response based on the breeder's equation. However, this phenotypic change is unlikely to be caused by microevolution, because selection seems mainly to act on the nongenetic component of the trait. Furthermore, demographical changes could also not account for the advancing arrival date. Instead, a strong correlation between spring temperatures and population mean arrival date suggests that phenotypic plasticity best explains the advancement of arrival date in our study population. Our study dissects the evolutionary and environmental forces that shape timing traits and thereby increases knowledge of how populations cope with rapidly changing environments. 相似文献