首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central current debate in community ecology concerns the relative importance of deterministic versus stochastic processes underlying community structure. However, the concept of stochasticity presents several profound philosophical, theoretical and empirical challenges, which we address here. The philosophical argument that nothing in nature is truly stochastic can be met with the following operational concept of neutral stochasticity in community ecology: change in the composition of a community (i.e. community dynamics) is neutrally stochastic to the degree that individual demographic events – birth, death, immigration, emigration – which cause such changes occur at random with respect to species identities. Empirical methods for identifying the stochastic component of community dynamics or structure include null models and multivariate statistics on observational species‐by‐site data (with or without environmental or trait data), and experimental manipulations of ‘stochastic’ species colonization order or relative densities and frequencies of competing species. We identify the fundamental limitations of each method with respect to its ability to allow inferences about stochastic community processes. Critical future needs include greater precision in articulating the link between results and ecological inferences, a comprehensive theoretical assessment of the interpretation of statistical analyses of observational data, and experiments focusing on community size and on natural variation in species colonization order. Synthesis Community structure and dynamics have often been described as being underlain by ‘stochastic’ or ‘neutral’ processes, but there is great confusion as to what exactly this means. We attempt to provide conceptual clarity by specifying precisely what focal ecological variable (e.g. species distributions, community composition, demography) is considered to be stochastic with respect to what other variables (e.g. other species' distributions, traits, environment) when using different empirical methods. We clarify what inferences can be drawn by different observational and experimental approaches, and we suggest future avenues of research to better understand the role of neutral stochasticity in community ecology.  相似文献   

2.
Recent ecological forecasts predict that ~25% of species worldwide will go extinct by 2050. However, these estimates are primarily based on environmental changes alone and fail to incorporate important biological mechanisms such as genetic adaptation via evolution. Thus, environmental change can affect population dynamics in ways that classical frameworks can neither describe nor predict. Furthermore, often due to a lack of data, forecasting models commonly describe changes in population demography by summarizing changes in fecundity and survival concurrently with the intrinsic growth rate (r). This has been shown to be an oversimplification as the environment may impose selective pressure on specific demographic rates (birth and death) rather than directly on r (the difference between the birth and death rates). This differential pressure may alter population response to density, in each demographic rate, further diluting the information combined to produce r. Thus, when we consider the potential for persistence via adaptive evolution, populations with the same r can have different abilities to persist amidst environmental change. Therefore, we cannot adequately forecast population response to climate change without accounting for demography and selection on density dependence. Using a continuous‐time Markov chain model to describe the stochastic dynamics of the logistic model of population growth and allow for trait evolution via mutations arising during birth events, we find persistence via evolutionary tracking more likely when environmental change alters birth rather than the death rate. Furthermore, species that evolve responses to changes in the strength of density dependence due to environmental change are less vulnerable to extinction than species that undergo selection independent of population density. By incorporating these key demographic considerations into our predictive models, we can better understand how species will respond to climate change.  相似文献   

3.
Divergence time estimates derived from phylogenies are crucial to infer historical biogeography and diversification dynamics. Yet, the impact of fossil record incompleteness on macroevolutionary reconstructions remains equivocal. Here, we investigate to what extent gaps in the fossil record can impinge downstream evolutionary inferences in the beetle family Silphidae. Recent discoveries have pushed back the fossil record of this group from the Eocene into the Jurassic. We estimated the divergence times of the family using both its currently understood fossil record and the fossil record known prior to these recent discoveries. All fossil calibrations were informed with different parametric distributions to investigate the weight of priors on posterior age estimates. Based on time‐calibrated trees, we assessed the impact of fossil calibrations on the inference of ancestral ranges and diversification rate dynamics in the genus Nicrophorus. Depending upon the selected sets of fossil constraints, the age discrepancies had a major impact on the macroevolutionary inferences: the biogeographic extrapolations relative to paleogeography are markedly contrasting, and the calculated rates at which species form or go extinct (and when they varied) are strikingly different. We show that soft prior distributions do not necessarily alleviate such shortcomings therefore preventing the inference of reliable macroevolutionary patterns in groups presenting a taphonomic bias in their fossil record.  相似文献   

4.
Understanding the patterns of biodiversity through time and space is a challenging task. However, phylogeny‐based macroevolutionary models allow us to account and measure many of the processes responsible for diversity buildup, namely speciation and extinction. The general latitudinal diversity gradient (LDG) is a well‐recognized pattern describing a decline in species richness from the equator polewards. Recent macroecological studies in ectomycorrhizal (EM) fungi have shown that their LDG is shifted, peaking at temperate rather than tropical latitudes. Here we investigate this phenomenon from a macroevolutionary perspective, focusing on a well‐sampled group of edible EM mushrooms from the genus Amanita—the Caesar's mushrooms, which follow similar diversity patterns. Our approach consisted in applying a suite of models including (1) nontrait‐dependent time‐varying diversification (Bayesian analysis of macroevolutionary mixtures [BAMM]), (2) continuous trait‐dependent diversification (quantitative‐state speciation and extinction [QuaSSE]), and (3) diversity‐dependent diversification. In short, results give strong support for high speciation rates at temperate latitudes (BAMM and QuaSSE). We also find some evidence for different diversity‐dependence thresholds in “temperate” and “tropical” subclades, and little differences in diversity due to extinction. We conclude that our analyses on the Caesar's mushrooms give further evidence of a temperate‐peaking LDG in EM fungi, highlighting the importance and the implications of macroevolutionary processes in explaining diversity gradients in microorganisms.  相似文献   

5.

Marine habitats vary widely in structure, from incredibly complex coral reefs to simpler deep water and open ocean habitats. Hydromechanical models of swimming kinematics and microevolutionary studies suggest that these habitats select for different body shape characteristics. Fishes living in simple habitats are predicted to experience selection for energy-efficient sustained swimming, which can be achieved by fusiform body shapes. In contrast, fishes living in complex habitats are predicted to be under selection for maneuverability, which can be enhanced by deep-bodied and laterally compressed forms. To look for a signature of these processes at a broad macroevolutionary scale, we quantified the body shapes of 3322 species of marine teleostean fishes using a series of linear measurements. We scored each species for whether they were reef-associated or not and tested for morphological differences using a phylogenetic framework. Our results confirmed significant overall shape differences between reef-associated teleosts and those occupying structurally simpler marine habitats. Reef-associated species have, on average, deeper bodies and higher depth-to-width ratios, while non-reef species are more streamlined with narrower and shallower caudal peduncles. Despite the numerous evolutionary forces that may influence body shapes on a broad macroevolutionary scale, our results reveal differences in body shapes between reef-associated and non-reef species that are consistent with hydromechanical models of swimming kinematics as well as with microevolutionary patterns.

  相似文献   

6.
Competition can drive macroevolutionary change, for example during adaptive radiations. However, we still lack a clear understanding of how it shapes diversification processes and patterns. To better understand the macroevolutionary consequences of competition, as well as the signal left on phylogenetic data, we developed a model linking trait evolution and species diversification in an ecological context. We find four main results: first, competition spurs trait diversity but not necessarily species richness; second, competition produces slowdowns in species diversification even in the absence of explicit ecological limits, but not in phenotypic diversification even in the presence of such limits; third, early burst patterns do not provide a reliable way of testing for adaptive radiations; and fourth, looking for phylogenetic signal in trait data and support for phenotypic models incorporating competition is a better alternative. Our results clarify the macroevolutionary consequences of competition and could help design more powerful tests of adaptive radiations in nature.  相似文献   

7.
Rensch's rule, a macroevolutionary pattern in which sexual size dimorphism (SSD) increases with body size in male‐biased SSD species, or decreases with female‐biased SSD species, has been investigated in many vertebrates because it indicates whether SSD is being driven by sexual selection or a different force (i.e. fecundity or natural selection). Evidence in turtles has shown some conflicting results, which may be explained by the different phylogenies used in the analyses. Because the newly available well‐resolved phylogeny of family Kinosternidae provides evidence for the ancient monophyly of Staurotypidae and Kinosternidae and their recognition as separate families (previously Staurotypidae was considered as a subfamily within Kinosternidae) and introduced the genus Cryptochelys for the monophyletic leucostomum clade, we revisit the pattern of SSD and body size in Kinosternidae. By contrast to what had been proposed, we found that the Kinosternidae as formerly recognized (i.e. including Staurotypus and Claudius) and the restricted Kinosternidae both follow a pattern consistent with Rensch's rule. Our analysis with published body size data did not change our results, confirming the importance of the phylogeny used in macroevolutionary studies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 806–809.  相似文献   

8.

Objective

Infants from multiple pregnancies have higher rates of preterm birth, stillbirth and neonatal death and differences in multiple birth rates (MBR) exist between countries. We aimed to describe differences in MBR in Europe and to investigate the impact of these differences on adverse perinatal outcomes at a population level.

Methods

We used national aggregate birth data on multiple pregnancies, maternal age, gestational age (GA), stillbirth and neonatal death collected in the Euro-Peristat project (29 countries in 2010, N = 5 074 643 births). We also used European Society of Human Reproduction and Embryology (ESHRE) data on assisted conception and single embryo transfer (SET). The impact of MBR on outcomes was studied using meta-analysis techniques with random-effects models to derive pooled risk ratios (pRR) overall and for four groups of country defined by their MBR. We computed population attributable risks (PAR) for these groups.

Results

In 2010, the average MBR was 16.8 per 1000 women giving birth, ranging from 9.1 (Romania) to 26.5 (Cyprus). Compared to singletons, multiples had a nine-fold increased risk (pRR 9.4, 95% Cl 9.1–9.8) of preterm birth (<37 weeks GA), an almost 12-fold increased risk (pRR 11.7, 95% CI 11.0–12.4) of very preterm birth (<32 weeks GA). Pooled RR were 2.4 (95% Cl 1.5–3.6) for fetal mortality at or after 28 weeks GA and 7.0 (95% Cl 6.1–8.0) for neonatal mortality. PAR of neonatal death and very preterm birth were higher in countries with high MBR compared to low MBR (17.1% (95% CI 13.8–20.2) versus 9.8% (95% Cl 9.6–11.0) for neonatal death and 29.6% (96% CI 28.5–30.6) versus 17.5% (95% CI 15.7–18.3) for very preterm births, respectively).

Conclusions

Wide variations in MBR and their impact on population outcomes imply that efforts by countries to reduce MBR could improve perinatal outcomes, enabling better long-term child health.  相似文献   

9.
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with Ppinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant–insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade‐offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant–insect coevolution.  相似文献   

10.
Definitions of macroevolution fall into three categories: (1) evolution of taxa of supraspecific rank; (2) evolution on the grand time-scale; and (3) evolution that is guided by sorting of interspecific variation (as opposed to sorting of intraspecific variation in microevolution). Here, it is argued that only definition 3 allows for a consistent separation of macroevolution and microevolution. Using this definition, speciation has both microevolutionary and macroevolutionary aspects: the process of morphological transformation is microevolutionary, but the variation among species that it produces is macroevolutionary, as is the rate at which speciation occurs. Selective agents may have differential effects on intraspecific and interspecific variation, with three possible situations: effect at one level only, effect at both levels with the same polarity but potentially different intensity, and effects that oppose between levels. Whereas the impact of all selective agents is direct in macroevolution, microevolution requires intraspecific competition as a mediator between selective agents and evolutionary responses. This mediating role of intraspecific competition occurs in the presence of sexual reproduction and has therefore no analogue at the macroevolutionary level where species are the evolutionary units. Competition between species manifests both on the microevolutionary and macroevolutionary level, but with different effects. In microevolution, interspecific competition spurs evolutionary divergence, whereas it is a potential driver of extinction at the macroevolutionary level. Recasting the Red Queen hypothesis in a macroevolutionary framework suggests that the effects of interspecific competition result in a positive correlation between origination and extinction rates, confirming empirical observations herein referred to as Stanley's rule.  相似文献   

11.
Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade''s evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.  相似文献   

12.
Aims The neutral theory of biodiversity provides a powerful framework for modeling macroecological patterns and interpreting species assemblages. However, there remain several unsolved problems, including the effect of relaxing the assumption of strict neutrality to allow for empirically observed variation in vital rates and the 'problem of time'—empirically measured coexistence times are much shorter than the prediction of the strictly neutral drift model. Here, we develop a nearly neutral model that allows for differential birth and death rates of species. This model provides an approach to study species coexistence away from strict neutrality.Methods Based on Moran's neutral model, which assumes all species in a community have the same competitive ability and have identical birth and death rates, we developed a model that includes birth–death trade-off but excludes speciation. This model describes a wide range of asymmetry from strictly neutral to nearly neutral to far from neutral and is useful for analyzing the effect of drift on species coexistence. Specifically, we analyzed the effects of the birth–death trade-off on the time and probability of species coexistence and quantified the loss of biodiversity (as measured by Simpson's diversity) due to drift by varying species birth and death rates.Important findings We found (i) a birth–death trade-off operating as an equalizing force driven by demographic stochasticity promotes the coexistence of nearly neutral species. Species near demographic trade-offs (i.e. fitness equivalence) can coexist even longer than that predicted by the strictly neutral model; (ii) the effect of birth rates on species coexistence is very similar to that of death rates, but their compensatory effects are not completely symmetric; (iii) ecological drift over time produces a march to fixation. Trade-off-based neutral communities lose diversity more slowly than the strictly neutral community, while non-neutral communities lose diversity much more rapidly; and (iv) nearly neutral systems have substantially shorter time of coexistence than that of neutral systems. This reduced time provides a promising solution to the problem of time.  相似文献   

13.
Previous studies investigating the relationship between passive maternal smoking and preterm birth reveal inconsistent results. We conducted the current meta-analysis of observational studies to evaluate the relationship between passive maternal smoking and preterm birth. We identified relevant studies by searching PubMed, EMBASE, and ISI Web of Science databases. We used random-effects models to estimate summary odds ratios (SORs) and 95% confidence intervals (CIs) for aforementioned association. For the analysis, we included 24 studies that involved a total of 5607 women who experienced preterm birth. Overall, the SORs of preterm birth for women who were ever exposed to passive smoking versus women who had never been exposed to passive smoking at any place and at home were 1.20 (95%CI = 1.07–1.34,I2 = 36.1%) and 1.16 (95%CI = 1.04–1.30,I2 = 4.4%), respectively. When we conducted a stratified analysis according to study design, the risk estimate was slightly weaker in cohort studies (SOR = 1.10, 95%CI = 1.00–1.21,n = 16) than in cross-sectional studies (SOR = 1.47, 95%CI = 1.23–1.74,n = 5). Additionally, the associations between passive maternal smoking and preterm birth were statistically significant for studies conducted in Asia (SOR = 1.26, 95%CI = 1.05–1.52), for studies including more than 100 cases of preterm birth (SOR = 1.22, 95%CI = 1.05–1.41), and for studies adjusted for maternal age (SOR = 1.27,95%CI = 1.09–1.47), socioeconomic status and/or education (SOR = 1.28, 95%CI = 1.10–1.49), body mass index (SOR = 1.33, 95%CI = 1.04–1.71), and parity (SOR = 1.27, 95%CI = 1.13–1.43). Our findings demonstrate that passive maternal smoking is associated with an increased risk of preterm birth. Future prospective cohort studies are warranted to provide more detailed results stratified by passive maternal smoking during different trimesters of pregnancy and by different types and causes of preterm birth.  相似文献   

14.
Co‐dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best‐supported model, temperature affects the per‐lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes.  相似文献   

15.
This paper concerns assemblages of sessile animals occupying shaded, commonly vertical hard substrata in the shallow subtidal zone. We are interested particularly in questions about the coexistence of species and about what influences their joint dynamics. We propose a conceptual model which focuses on variation in characteristics such as birth and death rates, competitive interactions and dispersal. We argue that, qualitatively, this model appears to be a satisfactory representation of the important characteristics of certain sessile assemblages. Further, we suggest that it may explain the coexistence of a large number of ecologically similar species in assemblages that appear in a sense ‘stable’ (but where assemblages at different sites differ in detail). There is support for this assertion from formal theoretical work on simpler versions of the model. It is not sufficient merely to argue that the model seems satisfactory or plausible, so we finally consider what kind of data is needed for the further development and testing of this kind of model.  相似文献   

16.
Abstract: Scale and hierarchy must be incorporated into any conceptual framework for the study of macroevolution, i.e. evolution above the species level. Expansion of temporal and spatial scales reveals evolutionary patterns and processes that are virtually inaccessible to, and unpredictable from, short‐term, localized observations. These larger‐scale phenomena range from evolutionary stasis at the species level and the mosaic assembly of complex morphologies in ancestral forms to the non‐random distribution in time and space of the origin of major evolutionary novelties, as exemplified by the Cambrian explosion and post‐extinction recoveries of metazoans, and the preferential origin of major marine groups in onshore environments and tropical waters. Virtually all of these phenomena probably involve both ecological and developmental factors, but the integration of these components with macroevolutionary theory has only just begun. Differential survival and reproduction of units can occur at several levels within a biological hierarchy that includes DNA sequences, organisms, species and clades. Evolution by natural selection can occur at any level where there is heritable variation that affects birth and death of units by virtue of interaction with the environment. This dynamic can occur when selfish DNA sequences replicate disproportionately within genomes, when organisms enjoy fitness advantages within populations (classical Darwinian selection), when differential speciation or extinction occurs within clades owing to organismic properties (effect macroevolution), and when differential speciation or extinction occurs within clades owing to emergent, species‐level properties (in the strict sense species selection). Operationally, emergent species‐level properties such as geographical range can be recognized by testing whether their macroevolutionary effects are similar regardless of the different lower‐level factors that produce them. Large‐scale evolutionary trends can be driven by transformation of species, preferential production of species in a given direction, differential origination or extinction, or any combination of these; the potential for organismic traits to hitch‐hike on other factors that promote speciation or damp extinction is high. Additional key attributes of macroevolutionary dynamics within biological hierarchies are that (1) hierarchical levels are linked by upward and downward causation, so that emergent properties at a focal level do not impart complete independence; (2) hierarchical effects are asymmetrical, so that dynamics at a given focal level need not propagate upwards, but will always cascade downwards; and (3) rates are generally, although not always, faster at lower hierarchical levels. Temporal and spatial patterns in the origin of major novelties and higher taxa are significantly discordant from those at the species and genus levels, suggesting complex hierarchical effects that remain poorly understood. Not only are many of the features promoting survivorship during background times ineffective during mass extinctions, but also they are replaced in at least some cases by higher‐level, irreducible attributes such as clade‐level geographical range. The incorporation of processes that operate across hierarchical levels and a range of temporal and spatial scales has expanded and enriched our understanding of evolution.  相似文献   

17.
Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios: when speciation is mediated by geographical or resource‐partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader''s attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.  相似文献   

18.
The fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.  相似文献   

19.
Mathematical models in ecology and epidemiology often consider populations “at equilibrium”, where in-flows, such as births, equal out-flows, such as death. For stochastic models, what is meant by equilibrium is less clear – should the population size be fixed or growing and shrinking with equal probability? Two different mechanisms to implement a stochastic steady state are considered. Under these mechanisms, both a predator-prey model and an epidemic model have vastly different outcomes, including the median population values for both predators and prey and the median levels of infection within a hospital (P < 0.001 for all comparisons). These results suggest that the question of how a stochastic steady state is modeled, and what it implies for the dynamics of the system, should be carefully considered.  相似文献   

20.
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal''s coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号