首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.  相似文献   

2.
To analyse the reliability and accuracy of genotype analysis with high-density oligonucleotide microarrays, this method and other experimental approaches were used to analyse genomic DNA of two popular Saccharomyces cerevisiae laboratory strains. S288C was used for systematic sequencing of 'the' S. cerevisiae genome; CEN.PK113-7D is a popular strain for physiological studies and functional genomics. Random amplified polymorphic DNA, electrophoretic karyotyping and microarray analysis all indicated a high level of sequence similarity between the two strains. In the microarray analysis, as few as 288 (4.5%) of the ca. 6300 represented yeast genes were identified that yielded significantly different hybridisation intensities between the two strains. These could be classified as amplified, absent, or with sequence polymorphism in CEN.PK113-7D compared to S288C. A detailed analysis focused on the subset of 25 genes called absent in CEN.PK113-7D. Among these absent genes, 17 were clustered together on five chromosomes, mainly in subtelomeric regions. Thorough analysis of these regions by polymerase chain reaction (PCR) and restriction fragment length polymorphism confirmed the absence of these genes in CEN.PK113-7D. Surprisingly, three of these regions were not smaller in CEN.PK113-7D chromosomes, indicating that they may harbour unidentified and potentially new sequences. In addition, eight genes called absent by the microarrays were scattered over the chromosomes. Using diagnostic PCR most of these genes were actually found to be present in CEN.PK113-7D, but after sequencing were found to differ significantly at the DNA level from S288C, explaining the poor hybridisation to the arrays. Our results indicate that DNA microarrays are a powerful tool for determining genotypic similarity between different yeast strains. However, to obtain meaningful information at the individual gene level, this method should be backed up by additional techniques.  相似文献   

3.
We have identified a composite element, Ty4, in S. cerevisiae that is ca 6.3 kb in length and contains two tau sequences as long terminal repeats. According to hybridization analyses, Ty4 occurs in low but varying copy number (one to four copies) in different yeast strains. By several criteria, Ty4 is a novel type of retroelement which is similar but not related to the other Ty elements in yeast. Two cosmid clones from strain C836 (c90 and c476) carrying individual copies of Ty4 were isolated. By restriction analysis and nucleotide sequence we show that c476 derives from the 'transposition right arm hot spot' of chromosome III [1]. The analysis of c476 revealed that an initiator tRNA(Met) gene is present at this locus and that an unusual concentration of different Ty elements has occurred: in addition to the Ty4, a Ty1 and a Ty2 element were detected in this region, confirming its highly polymorphic character.  相似文献   

4.
Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles.  相似文献   

5.
Many industrial strains of Saccharomyces cerevisiae have been selected primarily for their ability to convert sugars into ethanol efficiently despite exposure to a variety of stresses. To begin investigation of the genetic basis of phenotypic variation in industrial strains of S. cerevisiae, we have sequenced the genome of a wine yeast, AWRI1631, and have compared this sequence with both the laboratory strain S288c and the human pathogenic isolate YJM789. AWRI1631 was found to be substantially different from S288c and YJM789, especially at the level of single-nucleotide polymorphisms, which were present, on average, every 150 bp between all three strains. In addition, there were major differences in the arrangement and number of Ty elements between the strains, as well as several regions of DNA that were specific to AWRI1631 and that were predicted to encode proteins that are unique to this industrial strain.  相似文献   

6.
Haploid yeast cells contain approximately 35 Ty (transposon yeast) elements. To facilitate the study of these elements, we have constructed yeast strains in which one of these transposons carries a genetic marker. The elements that we have modified are Ty912 and Ty917, elements originally detected at the HIS4 locus in spontaneously occurring his4- mutants. The strain constructions took place in three stages: 1) cloning of the mutant HIS4 genes containing the Ty elements; 2) introduction of a HindIII restriction fragment containing the yeast URA3 gene into the cloned transposons; and 3) replacement of the chromosomal HIS4 gene with the modified genes constructed in vitro. These strains will be extremely useful in the study of Ty transposition and other Ty-promoted DNA rearrangements.  相似文献   

7.
The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.  相似文献   

8.
ABSTRACT

Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article.

Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation  相似文献   

9.
10.
Transposon Tagging Using Ty Elements in Yeast   总被引:16,自引:4,他引:12       下载免费PDF全文
We have used the ability to induce high levels of Ty transposition to develop a method for transposon mutagenesis in Saccharomyces cerevisiae. To facilitate genetic and molecular analysis, we have constructed GAL1-promoted TyH3 or Ty917 elements that contain unique cloning sites, and marked these elements with selectable genes. These genes include the yeast HIS3 gene, and the plasmid PiAN7 containing the Tn903 NEO gene. The marked Ty elements retain their ability to transpose, to mutate the LYS2, LYS5, or STE2 genes, and to activate the promoterless his3 delta 4 target gene. Ty elements containing selectable genes are also useful in strain construction, in chromosomal mapping, and in gene cloning strategies.  相似文献   

11.
Evidence for transposition of dispersed repetitive DNA families in yeast.   总被引:149,自引:0,他引:149  
J R Cameron  E Y Loh  R W Davis 《Cell》1979,16(4):739-751
Dispersed repetitive DNA sequences from yeast (Saccharomyces cerevisiae) nuclear DNA have been isolated as molecular hybrids in lambdagt. Related S. cerevisiae strains show marked alterations in the size of the restriction fragments containing these repetitive DNAs. "Ty1" is one such family of repeated sequences in yeast and consists of a 5.6 kilobase (kb) sequence including a noninverted 0.25 kb sequence of another repetitious family, "delta", on each end. There are about 35 copies of Ty1 and at least 100 copies of delta (not always associated with Ty1) in the haploid genome. A few Ty1 elements are tandem and/or circular, but most are disperse and show (along with delta) some sequence divergence between repeat units. Sequence alterations involving Ty1 elements have been found during the continual propagation of a single yeast clone over the course of a month. One region with a large number of delta sequences (SUP4) also shows a high frequency of sequence alterations when different strains are compared. One of the differences between two such strains involves the presence or absence of a Ty1 element. The novel joint is at one inverted pair of delta sequences.  相似文献   

12.
13.
We present the 4.8-Mb complete genome sequence of Salmonella enterica serovar Typhi strain Ty2, a human-specific pathogen causing typhoid fever. A comparison with the genome sequence of recently isolated S. enterica serovar Typhi strain CT18 showed that 29 of the 4,646 predicted genes in Ty2 are unique to this strain, while 84 genes are unique to CT18. Both genomes contain more than 200 pseudogenes; 9 of these genes in CT18 are intact in Ty2, while 11 intact CT18 genes are pseudogenes in Ty2. A half-genome interreplichore inversion in Ty2 relative to CT18 was confirmed. The two strains exhibit differences in prophages, insertion sequences, and island structures. While CT18 carries two plasmids, one conferring multiple drug resistance, Ty2 has no plasmids and is sensitive to antibiotics.  相似文献   

14.
The structural analysis of aberrant chromosomes is important for our understanding of the molecular mechanisms underlying chromosomal rearrangements. We have identified a number of diploid Saccharomyces cerevisiae clones that have undergone loss of heterozygosity (LOH) leading to functional inactivation of the hemizygous URA3 marker placed on the right arm of chromosome III. Aberrant-sized chromosomes derived from chromosome III were detected in approximately 8% of LOH clones. Here, we have analyzed the structure of the aberrant chromosomes in 45 LOH clones with a PCR-based method that determines the ploidy of a series of loci on chromosome III. The alterations included various deletions and amplifications. Sequencing of the junctions revealed that all the breakpoints had been made within repeat sequences in the yeast genome, namely, MAT-HMR, which resulted in intrachromosomal deletion, and retrotransposon Ty1 elements, which were involved in various translocations. Although the translocations involved different breakpoints on different chromosomes, all breakpoints were exclusively within Ty1 elements. Some of the resulting Ty1 elements left at the breakpoints had a complex construction that indicated the involvement of other Ty1 elements not present at the parental breakpoints. These indicate that Ty1 elements are crucially involved in the generation of chromosomal rearrangements in diploid yeast cells.  相似文献   

15.
We discovered on the chromosome of Saccharomyces cerevisiae Sigma 1278b novel genes involved in L-proline analogue L-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of the L-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Sigma 1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable for L-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of the N-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required for L-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Sigma 1278b background strains. When this novel MPR1 or MPR2 gene (sigma 1278b gene for L-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to L-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.  相似文献   

16.
We divided industrial yeast strains of Saccharomyces cerevisiae into three groups based on the sequences of their internal transcribed spacer (ITS) regions. One group contained sake yeasts, shochu yeasts, and one bakery yeast, another group contained wine yeasts, and the third group contained beer and whisky yeasts, including seven bakery yeasts. The three groups were distinguished by polymorphisms at two positions, designated positions B and C, corresponding to nucleotide numbers 279 and 301 respectively in the S288C strain. The yeasts in the Japanese group had one thymine at position B and one thymine at position C. The wine yeasts had one thymine at position B and one cytosine at position C. And the beer and whisky yeasts had two thymines at position B and one cytosine at position C. Strains of S. pastorianus were divided into three groups based on the sequences of their 26S rDNA D1/D2 and ITS regions.  相似文献   

17.
CYC1 and sup4 are part of a tightly linked cluster of genes on chromosome X in the yeast Saccharomyces cerevisiae. Using as probes previously cloned fragments containing the CYC1 and sup4 genes, we have identified and cloned the deoxyribonucleic acid (DNA) present between these genes in one strain of yeast. We find that the CYC1 and sup4 genes are approximately 21 kilobases apart. In the same strain, the meiotic map distance is approximately 3.7 centimorgans, for a ratio of 5.6 kilobases per centimorgan in this interval. The physical mapping has allowed unambiguous determination of the orientation of CYC1 and sup4 relative to each other, the centromere, and a nearby transfer ribonucleic acid (tRNA(2Ser)) gene. The spontaneous mutation cyc1-1 inactivates the CYC1 gene as well as the neighboring loci OSM1 and RAD7. We have determined that a cyc1-1-bearing strain lacks approximately 13 kilobases of single-copy DNA from the CYC1-sup4 region, including all of the CYC1 coding information. There is a sequence homologous to the middle-repetitive element Ty1 at or near the breakpoint of the cyc1-1 deletion. We discuss the possibility that Ty elements play a role in the formation of such large, spontaneous deletions, which occur frequently in this region of chromosome X in certain yeast strains.  相似文献   

18.
Point mutation of Gly1250Ser (1250S) of the yeast fatty acid synthase gene FAS2 confers cerulenin resistance. This mutation also results in a higher production of the apple-like flavor component ethyl caproate in Japanese sake. We mutated the 1250th codon by in vitro site-directed mutagenesis to encode Ala (1250A) or Cys (1250C) and examined cerulenin resistance and ethyl caproate production. The mutated FAS2 genes were inserted into a binary plasmid vector containing a drug-resistance marker and a counter-selectable marker, GALp-GIN11M86. The plasmids were integrated into the wild-type FAS2 locus of a sake yeast strain, and the loss of the plasmid sequences from the integrants was done by growth on galactose plates, which is permissive for loss of GALp-GIN11M86. These counter-selected strains contained either the wild type or the mutated FAS2 allele but not the plasmid sequences, from which FAS2 mutant strains were selected by allele-specific PCR. The FAS2-1250C mutant produced a higher amount of ethyl caproate in sake than FAS2-1250S, while FAS2-1250A produced an ethyl caproate level intermediate between FAS2-1250S and the parental Kyokai no. 7 strain. Interestingly, these mutants only showed detectable cerulenin resistance. These 'self-cloning' yeast strains should be acceptable to the public because they can improve sake quality without the presence of extraneous DNA sequences.  相似文献   

19.
Laboratory strains of yeast ( Saccharomyces cerevisiae ) based on S288C ferment grape juice relatively poorly. We show that slow fermentation appears to be inherent to this strain, because the original S288C isolate shows fermentation similar to current laboratory isolates. We demonstrate further that some auxotrophic mutations in the laboratory strain show reduced rates of fermentation in grape juice, with lysine auxotrophs particularly impaired compared with isogenic Lys+ strains. Supplementing lysine at a 10-fold higher concentration than recommended allowed yeast cultures to reach higher final cell densities and restored the fermentation rate of auxotrophic strains to those of the corresponding wild-type strains. However, even with the additional supplementation, the fermentation rates of S288C strains were still slower than those of a commercial wine yeast strain. Conditions were developed that enable auxotrophic laboratory strains derived from S288C to ferment grape juice to completion with high efficiency on a laboratory scale. Fermentation in media based on grape juice will allow the suite of molecular genetic tools developed for these laboratory strains to be used in investigations of complex ferment characteristics and products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号