首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We initiated a multi-factor global change experiment to explore the effects of infrared heat loading (HT) and water table level (WL) treatment on soil temperature (T) in bog and fen peatland mesocosms. We found that the temperature varied highly by year, month, peatland type, soil depth, HT and WL manipulations. The highest effect of HT on the temperature at 25 cm depth was found in June for the bog mesocosms (3.34-4.27℃) but in May for the fen mesocosms (2.32-4.33℃) over the 2-year study period. The effects of WL in the bog mesocosms were only found between August and January, with the wet mesocosms warmer than the dry mesocosms by 0.48-2.03 ℃ over the 2-year study period. In contrast, wetter fen mesocoams were generally cooler by 0.16-3.87℃. Seasonal changes of temperatures elevated by the HT also varied by depth and ecosystem type, with temperature differences at 5 cm and 10 cm depth showing smaller seasonal fluctuations than those at 25 cm and 40 cm in the bog mesocosrns. However, increased HT did not always lead to warmer soil, especially in the fen mesocosms. Both HT and WL manipulations have also changed the length of the non-frozen season.  相似文献   

2.
华南丘陵区冬闲稻田二氧化碳、甲烷和氧化亚氮的排放特征   总被引:11,自引:0,他引:11  
采用静态箱 气相色谱法对收获后冬闲稻田CO2、CH4和N2O排放进行了田间原位测定,探讨了越冬稻田3种温室气体的排放规律.结果表明,残茬稻田和裸田的CO2的排放峰值分别出现在18:00和16:00左右.日间CH4排放为净值,夜间表现为弱吸收.残茬稻田和裸田N2O夜间排放分别为日间平均的1.79和1.58倍.残茬稻田的昼夜CO2平均排放通量显著高于裸田(P<0.05).在测定期间,残茬稻田CO2排放随温度升高而增高.相关分析表明,CO2排放与土温、地表温度和气温均呈显著相关,表明温度是影响收获后稻田CO2排放的主要因素.在11月10日至翌年1月18日测定期间,残茬稻田的CO2和CH4平均排放通量分别为(180.69±21.21) mg·m-2·h-1和(-0.04±0.01) mg·m-2·h-1,CO2排放通量较裸田高13.06%,CH4吸收增高50%.残茬稻田的N2O排放通量为(21.26±19.31) μg·m-2·h-1,较裸田低60.75%.由此说明华南丘陵区冬闲稻田是大气CO2和N2O的源,CH4的汇.  相似文献   

3.
Increased radiative forcing is an inevitable part of global climate change, yet little is known of its potential effects on the energy fluxes in natural ecosystems. To simulate the conditions of global warming, we exposed peat monoliths (depth, 0.6 m; surface area, 2.1 m2) from a bog and fen in northern Minnesota, USA, to three infrared (IR) loading (ambient, +45, and +90 W m–2) and three water table (–16, –20, and –29 cm in bog and –1, –10 and –18 cm in fen) treatments, each replicated in three mesocosm plots. Net radiation (Rn) and soil energy fluxes at the top, bottom, and sides of the mesocosms were measured in 1999, 5 years after the treatments had begun. Soil heat flux (G) increased proportionately with IR loading, comprising about 3%–8% of Rn. In the fen, the effect of IR loading on G was modulated by water table depth, whereas in the bog it was not. Energy dissipation from the mesocosms occurred mainly via vertical exchange with air, as well as with deeper soil layers through the bottom of the mesocosms, whereas lateral fluxes were 10–20-fold smaller and independent of IR loading and water table depth. The exchange with deeper soil layers was sensitive to water table depth, in contrast to G, which responded primarily to IR loading. The qualitative responses in the bog and fen were similar, but the fen displayed wider seasonal variation and greater extremes in soil energy fluxes. The differences of G in the bog and fen are attributed to differences in the reflectance in the long waveband as a function of vegetation type, whereas the differences in soil heat storage may also depend on different soil properties and different water table depth at comparable treatments. These data suggest that the ecosystem-dependent controls over soil energy fluxes may provide an important constraint on biotic response to climate change.  相似文献   

4.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

5.
Atmospheric CO2 and CH4 exchange in peatlands is controlled by water table levels and soil moisture, but impacts of short periods of dryness and rainfall are poorly known. We conducted drying-rewetting experiments with mesocosms from an ombrotrophic northern bog and an alpine, minerotrophic fen. Efflux of CO2 and CH4 was measured using static chambers and turnover and diffusion rates were calculated from depth profiles of gas concentrations. Due to a much lower macroporosity in the fen compared to the bog peat, water table fluctuated more strongly when irrigation was stopped and resumed, about 11 cm in the fen and 5 cm in the bog peat. Small changes in air filled porosity caused CO2 and CH4 concentrations in the fen peat to be insensitive to changes in water table position. CO2 emission was by a factor of 5 higher in the fen than in the bog mesocosms and changed little with water table position in both peats. This was probably caused by the importance of the uppermost, permanently unsaturated zone for auto- and heterotrophic CO2 production, and a decoupling of air filled porosity from water table position. CH4 emission was <0.4 mmol m?2 day?1 in the bog peat, and up to >12.6 mmol m?2 day?1 in the fen peat, where it was lowered by water table fluctuations. CH4 production was limited to the saturated zone in the bog peat but proceeded in the capillary fringe of the fen peat. Water table drawdown partly led to inhibition of methanogenesis in the newly unsaturated zone, but CH4 production appeared to continue after irrigation without time-lag. The identified effects of irrigation on soil moisture and respiration highlight the importance of peat physical properties for respiratory dynamics; but the atmospheric carbon exchange was fairly insensitive to the small-scale fluctuations induced.  相似文献   

6.
大气CO2增加对陆地生态系统微量气体地-气交换的影响   总被引:4,自引:1,他引:4  
简要综述了近年来国内外在大气CO2浓度增加对微量气体交换影响方面的研究进展,首先介绍了有关大气CO2浓度增加的研究技术和方法,比较了目前两种常用技术开顶箱(OTC)和开放式空气CO2增加(FACE)方法的优缺点,然后着重阐述了用OTC和FACE研究陆地生态系统CH4、N2O、CO2等微量气体的地气交换对大气CO2浓度增加的响应,综合现有的资料表明,大气CO2浓度增加,会促进绿色植物生物量增加,同时改变生物质的C/N,降低有机质的分解速率,增强了陆地生态系统对大气CO2的固特作用;大气CO2浓度增加会提高产甲烷菌的活性和影响CH4的排放过程,有可能导致湿地生态系统CH4的排放增加;大气CO2浓度增加对N2O排放影响的研究较少,且尚无一致的结论;另外,对于其他微量气体,尚没有盯关研究报道,鉴于此,今后应加强大气CO2浓度增加的微量气体地气交换响应研究。  相似文献   

7.
We measured net ecosystem exchange of carbon dioxide (CO2) (NEE) during wet and dry summers (2000 and 2001) across a range of plant communities at Mer Bleue, a large peatland near Ottawa, southern Ontario, Canada. Wetland types included ombrotrophic bog hummocks and hollows, mineral-poor fen, and beaver pond margins. NEE was significantly different among the sites in both years, but rates of gross photosynthesis did not vary spatially even though species composition at the sites was variable. Soil respiration rates were very different across sites and dominated interannual variability in summer NEE within sites. During the dry summer of 2001, net CO2 uptake was significantly smaller, and most locations switched from a net sink to a source of CO2 under a range of levels of photosynthetically active radiation (PAR). The wetter areas--poor fen and beaver pond margin--had the largest rates of CO2 uptake and smallest rates of respiratory loss during the dry summer. Communities dominated by ericaceous shrubs (bog sites) maintained similar rates of gross photosynthesis between years; by contrast, the sedge-dominated areas (fen sites) showed signs of early senescence under drought conditions. Water table position was the strongest control on respiration in the drier summer, whereas surface peat temperature explained most of the variability in the wetter summer. Q 10 temperature-respiration quotients averaged 1.6 to 2.2. The ratio between maximum photosynthesis and respiration ranged from 3.7:1 in the poor fen to 1.2:1 at some bog sites; it declined at all sites in the drier summer owing to greater respiration rates relative to photosynthesis in evergreen shrub sites and a change in both processes in sedge sites. Our ability to predict ecosystem responses to changing climate depends on a more complete understanding of the factors that control NEE across a range of peatland plant communities.  相似文献   

8.
The main objectives of this study were to uncover the pathways used for methanogenesis in three different boreal peatland ecosystems and to describe the methanogenic populations involved. The mesotrophic fen had the lowest proportion of CH4 produced from H2-CO2. The oligotrophic fen was the most hydrogenotrophic, followed by the ombrotrophic bog. Each site was characterized by a specific group of methanogenic sequences belonging to Methanosaeta spp. (mesotrophic fen), rice cluster-I (oligotrophic fen), and fen cluster (ombrotrophic bog).  相似文献   

9.
沼泽湿地是大气甲烷(CH4)的重要来源, 但有关亚热带亚高山沼泽湿地CH4排放的研究却鲜有报道, 特别是对不同覆被类型泥炭藓沼泽湿地CH4排放量的精确估算及其与环境因子的关系尚不清楚。该研究选择鄂西南亚高山泥炭藓沼泽湿地为研究区域, 于2018年11月-2019年10月间, 使用静态箱-气相色谱仪法原位测定3种覆被类型泥炭藓沼泽湿地CH4通量, 同步记录大气和地下5 cm土壤的温度以及地下水位变化。结果表明: (1)光照下, 裸露地(B)、泥炭藓(Sphagnum paluster)(S)、金发藓(Polytrichum commune)(P) 3种覆被类型泥炭藓沼泽湿地CH4-C通量全年变化范围分别为: 0.012-1.372、0.022-1.474、0.027-3.385 mg·m-2·h-1; 遮光处理下, B、S、P 3种覆被类型泥炭藓沼泽湿地CH4-C通量的全年变化范围分别为: 0.012-1.372、0.009-1.839、0.017-2.484 mg·m-2·h-1, 均为CH4排放源。同时, 光照条件下不同覆被泥炭藓沼泽湿地CH4排放量略大于黑暗条件, 但差异不明显。(2)不同覆被类型泥炭藓沼泽湿地CH4排放存在明显的季节变化规律, 即: 夏季>秋季>春季>冬季, 其中夏季CH4排放量显著大于其他季节, 占全年的57%-84%。该研究发现泥炭藓沼泽湿地CH4通量均与气温和地下5 cm土壤温度极显著相关, 且CH4排放量随温度升高呈指数增加, 表明温度是影响泥炭藓沼泽湿地CH4排放时间变化的主要环境因子。(3) 3种覆被类型泥炭藓沼泽湿地的年平均和年累计CH4排放量均依次为: P > S > B, P显著大于B。该研究发现植被类型与泥炭藓沼泽湿地CH4排放量存在显著相关性, 表明覆被类型是影响泥炭藓沼泽湿地CH4排放量空间变异的主要因子。(4) 3种覆被类型泥炭藓沼泽湿地CH4排放量均与地下水位变化不相关。该研究进一步丰富了泥炭藓沼泽湿地CH4排放规律, 同时也为区域碳循环提供了详实的基础数据。  相似文献   

10.
开放式空气CO2增高对稻田CH4和N2O排放的影响   总被引:12,自引:3,他引:9  
在FACE(free aircarbondioxideenrichment)平台上 ,采用静态暗箱 气相色谱法观测研究了大气CO2 浓度增加对稻田CH4和N2 O排放的影响 .结果表明 ,在 15 0和 2 5 0kgN·hm-2 两种氮肥水平下大气CO2 浓度增加 2 0 0 μmol·mol-1均明显促进水稻生长 ,水稻生物量积累 .大气CO2 浓度增加对 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田CH4排放均无显著影响 ,并简要分析了与现有文献报道结果不一致的原因 .大气CO2 浓度增加也未导致 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田N2 O排放的明显变化 ,与大多数研究结果一致 .  相似文献   

11.
Methane (CH4) is the most important greenhouse gas next to CO2 and as such it contributes to the enhanced greenhouse effect. Peat soils are often considered as sources of CH4. Grasslands on the other hand are generally considered to be a net sink for atmospheric CH4. The aim of this study was twofold: (i) to quantify the net CH4 emission of intensively managed grasslands on peat soil in the Netherlands; and (ii) to assess the effects of grassland management, i.e. drainage, nitrogen (N) fertilization, and grazing versus mowing, on CH4 emission rates. Net CH4 emissions were measured weekly or biweekly for one year with vented closed flux chambers at two sites, one with a mean ground water level of 22 cm below surface and one with a mean ground water level of 42 cm. On each site there were three treatments: mowing without N application, mowing with N application, and grazing with N application. The dominating species was perennial ryegrass (Lolium perenne L.). Net CH4 emissions were low, in general in the range of -0.2 to 0.2 mg CH4 m-2 d-1. In the relatively warm summer of 1994, consumption of atmospheric CH4 peaked at 0.4 mg m-2 d-1. On an annual basis, the sites were net consumers of atmospheric CH4. However, the consumption was small: 0.31 to 0.08 kg CH4 ha-1 yr-1. Effect of mean ground water level was significant, but small. There were no significant effects of withholding N fertilization for some years and grazing versus mowing on net CH4 emissions. We conclude that grassland management of intensively managed grasslands on peat soil is not a suitable tool for reducing net CH4 emissions.  相似文献   

12.
The moss layer transfer technique removes the top layer of vegetation from donor sites as a method to transfer propagules and restore degraded or reclaimed peatlands. As this technique is new, little is known about the impacts of moss layer transfer on vegetation and carbon fluxes following harvest. We monitored growing season carbon dioxide (CO2) and methane (CH4) fluxes as well as plant communities at donor sites and neighbouring natural peatland sites in an ombrotrophic bog and minerotrophic fen in Alberta, Canada from which material was harvested between 1 and 6 years prior to the study. Plant recovery at all donor sites was rapid with an average of 72% total plant cover one growing season after harvest at the fen and an average of 87% total plant cover two growing seasons after harvest at the bog. Moss cover also returned, averaging 84% 6 years after harvest at the bog. The majority of natural peatlands in western Canada are treed and tree recruitment at the donor sites was limited. Methane emissions were higher from donor sites compared to natural sites due to the high water table and greater sedge cover. Carbon budgets suggested that the donor fen and bog sites released higher CO2 and CH4 over the growing season compared to adjacent natural sites. However, vegetation re-establishment on donor sites was rapid, and it is possible that these sites will return to their original carbon-cycle functioning after disturbance, suggesting that donor sites may recover naturally without implementing management strategies.  相似文献   

13.
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30‐day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30‐day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.  相似文献   

14.
Photosynthesis is the source of our food and fiber. Increasing world population, economic development, and diminishing land resources forecast that a doubling of productivity is critical in meeting agricultural demand before the end of this century. A starting point for evaluating the global potential to meet this goal is establishing the maximum efficiency of photosynthetic solar energy conversion. The potential efficiency of each step of the photosynthetic process from light capture to carbohydrate synthesis is examined. This reveals the maximum conversion efficiency of solar energy to biomass is 4.6% for C3 photosynthesis at 30 degrees C and today's 380 ppm atmospheric [CO2], but 6% for C4 photosynthesis. This advantage over C3 will disappear as atmospheric [CO2] nears 700 ppm.  相似文献   

15.
16.
氢醌和双氰胺对种稻土壤N2O和CH4排放的影响   总被引:14,自引:1,他引:13  
通过盆栽试验,研究了脲酶抑制剂氢醌(HQ)、硝化抑制剂双氰胺(DCD)及二者的组合(HQ+DCD)对种稻土壤N2O和CH4排放的影响.结果表明,在未施麦秸粉时,所有施抑制剂的处理均较单施尿素的能显著减少水稻生长期供试土壤N2O和CH4的排放.特别是HQ+DCD处理,其N2O和CH4排放总量分别约为对照的1/3和1/2.而在施麦秸粉后,该处理的N2O排放总量为对照的1/2,但CH4排放总量却较少差别.不论是N2O还是CH4的排放总量,施麦秸粉的都比未施的高出1倍和更多.因此,单从土壤源温室气体排放的角度看,将未腐熟的有机物料与尿素共施,并不是一种适宜的施肥制度.供试土壤的N2O排放通量,与水稻植株的NO-3N含量和土表水层中的矿质N量分别呈显著的指数正相关和线性正相关;CH4的排放通量则与水稻植株的生长量和土表水层中的矿质N量呈显著的线性负相关.在N2O与CH4的排放间,未施麦秸粉时存在着定量的相互消长关系;施麦秸粉后,虽同样存在所述关系,但难以定量化.  相似文献   

17.
The effect of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed four times during the 80 day trial were approximately 20% higher than emissions from unmixed (static) piles. For both treatments, carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) accounted for 75-80%, 18-21%, and 2-4% of GHG emissions, respectively. Seventy percent of CO(2) emissions and 95% of CH(4) emissions from all piles occurred within first 23 days. By contrast, 80-95% of N(2)O emissions occurred after this period. Mixed and static piles released 2 and 1.6 kg GHG (CO(2)-Eq.) for each kg of degraded volatile solids (VS), respectively. Our results suggest that to minimize GHG emissions, farmers should store manure in undisturbed piles or delay the first mixing of compost piles for approximately 4 weeks.  相似文献   

18.
玉渡山水库生长季温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2  
为了探讨温带水库温室气体排放规律,采用静态箱-色谱分析法,研究了温带地区库龄10年内的北京玉渡山水库生长季3种温室气体CO2、CH4及N2O排放特征,及其影响因子。结果表明:样地类型、测定月份与样地类型交互作用对3种温室气体通量影响极显著,5月消落带CO2通量(664.31mg·m-2·h-1)达到最大,显著高于入库口和浅水区;8月消落带CH4通量(0.87mg·m-2·h-1)及N2O通量(3.05mg·m-2·h-1)最大;8月,切除消落带样地地上植物后,3种温室气体通量均有所降低。CO2通量与地下5cm地温、氧化还原电位和水体总氮显著正相关,与地上生物量和水体pH显著负相关;CH4通量与地表温度、地上生物量、水体pH呈显著相关,与水体总氮和水体铵态氮显著负相关;N2O通量与水体总氮含量显著相关,与水体pH显著负相关。采取平均估值法初步推测,在生长季,水库消落带、入库口及浅水区CO2排放量依次为15960、2160、-70kg·hm-2;CH4排放量依次20.04、-7.05、14.8kg·hm-2;N2O排放量依次83.42、3.79、-1.54kg·hm-2;表明消落带3种温室气体的排放量均较高,为玉渡山水库3种温室气体排放的重点区域。  相似文献   

19.
We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern Minnesota, USA. Ecoenzymatic stoichiometry was used to construct models for C use efficiency (CUE) and decomposition (M), and these were used to model respiration (Rm). Our goals were to determine the relative C, N, and P limitations on microbial processes and organic matter decomposition, and to identify environmental constraints on ecoenzymatic processes. Mean annual water, C, and P yields were greater in the fen, while N yields were similar in both the bog and fen. Soil chemistry differed between the bog and fen, and both watersheds exhibited significant differences among soil horizons. DHA and EEA differed by watersheds and soil horizons, CUE, M, and Rm differed only by soil horizons. C, N, or P limitations indicated by EEA stoichiometry were confirmed with orthogonal regressions of ecoenzyme pairs and enzyme vector analyses, and indicated greater N and P limitation in the bog than in the fen, with an overall tendency toward P-limitation in both the bog and fen. Ecoenzymatic stoichiometry, microbial respiration, and organic matter decomposition were responsive to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.  相似文献   

20.
Mu CC  Zhang BW  Han LD  Yu LL  Gu H 《应用生态学报》2011,22(4):857-865
By the methods of static chamber and gas chromatography, this paper studied the effects of fire disturbance on the seasonal dynamics and source/sink functions of CH4, CO2 and N2O emissions from Betula platyphylla-forested wetland as well as their relations with environmental factors in Xiaoxing' an Mountains of China. In growth season, slight fire disturbance on the wetland induced an increase of air temperature and ground surface temperature by 1.8-3.9 degrees C and a decrease of water table by 6.3 cm; while heavy fire disturbance led to an increase of air temperature and 0-40 cm soil temperature by 1.4-3.8 degrees C and a decrease of water table by 33.9 cm. Under slight or no fire disturbance, the CH4 was absorbed by the wetland soil in spring but emitted in summer and autumn; under heavy fire disturbance, the CH4 was absorbed in spring and summer but emitted in autumn. The CO2 flux had a seasonal variation of summer > spring = autumn under no fire disturbance, but of summer > autumn > spring under fire disturbance; and the N2O flux varied in the order of spring > summer > autumn under no fire disturbance, but of autumn > spring > summer under slight fire disturbance, and of summer > spring = autumn under heavy fire disturbance. At unburned site, the CO2 flux was significantly positively correlated with air temperature and ground surface temperature; at slightly burned site, the CO2 flux had significant positive correlations with air temperature, 5-10 cm soil temperature, and water table; at heavily burned sites, there was a significant positive correlation between CO2 flux and 5-40 cm soil temperature. Fire disturbance made the CH4 emission increased by 169.5% at lightly burned site or turned into weak CH4 sink at heavily burned site, and made the CO2 and N2O emissions and the global warming potential (GWP) at burned sites decreased by 21.2% -34.7%, 65.6% -95.8%, and 22.9% -36.6% respectively, compared with those at unburned site. Therefore, fire disturbance could decrease the greenhouse gases emission from Betula platyphylla-forested wetland, and planned firing could be properly implemented in wetland management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号