首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Preimplantation development is a period of cell division, cell shape change, and cell differentiation leading to the formation of an epithelium, the trophectoderm. The trophectoderm is the part of the conceptus that initiates uterine contact and, after transformation to become the trophoblast, uterine invasion. Thus, trophectoderm development during preimplantation stages is a necessary antecedent to the events of implantation. The preimplantation trophectoderm is a transporting epithelium with distinct apical and basolateral membrane domains that facilitate transepithelial Na+ and fluid transport for blastocoel formation. That transport is driven by Na+/K(+)-ATPase localized in basolateral membranes of the trophectoderm. Preimplantation embryos express multiple alpha and beta subunit isoforms of Na+/K(+)-ATPase, potentially constituting multiple isozymes, but the basolaterally located alpha1beta1, isozyme uniquely functions to drive fluid transport. They also express the gamma subunit, which is a modulator of Na+/K(+)-ATPase activity. In the mouse, two splice variants of the gamma subunit, gammaa and gammab, are expressed in the trophectoderm. Antisense knockdown of gamma subunit accumulation caused a delay of cavitation, implying an important role in trophectoderm function. The preimplantation trophectoderm offers a unique model for understanding the roles of Na+/K(+)-ATPase subunit isoforms in transepithelial transport.  相似文献   

2.
Unlike glucose transport, where translocation of the insulin-responsive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane is the principal mechanism underlying insulin stimulation, no consensus exists presently for the mechanism by which insulin activates the Na+/K(+)-ATPase. We have investigated (i) the subunit isoforms expressed and (ii) the effect of insulin on the subcellular distribution of the alpha beta isoforms of the Na+/K(+)-ATPase in plasma membranes (PM) and internal membranes (IM) from rat skeletal muscle. Western blot analysis, using isoform-specific antibodies to the various subunits of the Na+/K(+)-ATPase, revealed that skeletal muscle PM contains the alpha 1 and alpha 2 catalytic subunits and the beta 1 and beta 2 subunits of the Na+ pump. Skeletal muscle IM were enriched in alpha 2, beta 1, and beta 2; alpha 1 was barely detectable in this fraction. After insulin treatment, alpha 2 content in the PM increased, with a parallel decrease in its abundance in the IM pool; insulin did not have any effect on alpha 1 isoform amount or subcellular distribution. The beta 1 subunit, but not beta 2, was also elevated in the PM after insulin treatment, but this increase originated from a sucrose gradient fraction different from that of the alpha 2 subunit. Our findings suggest that insulin induces an isoform-specific translocation of Na+ pump subunits from different intracellular sources to the PM and that the hormone-responsive enzyme in rat skeletal muscle is an alpha 2:beta 1 dimer.  相似文献   

3.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

4.
The Na+,K(+)-ATPase alpha 1, alpha 2, and alpha 3 subunit isoforms have been shown to be differentially expressed in the nonpigmented (NPE) and pigmented (PE) cells of the ocular ciliary epithelium (CE) (Martin-Vasallo et al., J. Cell. Physiol., 141:243-252, 1989; Ghosh et al., J. Biol. Chem., 265:2935-2940, 1990). In this study we analyzed and compared the pattern of expression of the multiple Na+,K(+)-ATPase alpha (alpha 1, alpha 2, alpha 3) subunit genes with the pattern of expression of the Na+,K(+)-ATPase beta (beta 1, beta 2) subunit genes along the bovine CE. We have selected three regions in the CE, referred to as 1) the anterior region of the pars plicata, near the iris; 2) the middle region of the pars plicata; and 3) the posterior region of the pars plana, near the ora serrata. Using isoform-specific cDNA probes and antibodies for the Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunits on Northern and Western blot analysis, we found that mRNA and polypeptides are expressed in all three CE regions with different abundance. The pattern of expression of alpha and beta isoforms detected along the NPE cell layers suggests a gradient of alpha 1, alpha 2, alpha 3, beta 1, and beta 2 mRNAs and polypeptides that correlates with decreasing Na+,K(+)-ATPase activity from the most anterior region at the pars plicata towards the posterior region at the ora serrata. We also found marked differences in the pattern of immunolocalization of Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunit isoforms in different regions of the CE. In the anterior region, NPE cells stained intensely at the basal lateral membrane with specific monoclonal and polyclonal antibodies for each of the alpha (alpha 1, alpha 2, alpha 3) and beta (beta 1, beta 2) Na,K-ATPase isoforms. In the middle and posterior regions of the CE, NPE cells showed lower or absent levels of staining with alpha 1, alpha 2, alpha 3, and beta 1 antibodies, although staining with beta 2 was abundant. In contrast, PE cells throughout the CE were stained at the basal lateral membrane by antibodies to alpha 1 and beta 1, while no staining signals were detected with the rest of the antibodies (i.e. alpha 2, alpha 3, and beta 2). Our results support the conclusion that the three alpha and two beta isoforms of the Na+,K(+)-ATPase are differentially expressed in the two cell layers that make up the CE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The expression of the Na(+),K(+)-ATPase alpha and beta subunit isoforms in rat skeletal muscle and its age-associated changes have been shown to be muscle-type dependent. The cellular basis underlying these findings is not completely understood. In this study, we examined the expression of Na(+),K(+)-ATPase isoforms in individual fiber types and tested the hypothesis that, with age, the changes in the expression of the isoforms differ among individual fibers. We utilized immunohistochemical techniques to examine the expression of the subunit isoforms at the individual fiber levels. Immunofluorescence staining of the subunit isoforms in both white gastrocnemius (GW) and red gastrocnemius (GR) revealed a predominance of staining on the sarcolemmal membrane. Compared to the skeletal muscle of 6-month-old rats, there were substantial increases in the levels of alpha1, beta1, and beta3 subunit isoforms, and decreases in the levels of alpha2 and beta2 in 30-month-old rats. In addition, we found distinct patterns of staining for the alpha1, alpha2, beta1, and beta2 isoforms in tissue sections from young and aged rats. Muscle fiber-typing was performed to correlate the pattern of staining with specific fiber types. Staining for alpha1 and alpha2 isoforms in the skeletal muscle of young rats was generally evenly distributed among the fibers of GW and GR, with the exception of higher alpha1 levels in slow-twitch oxidative Type I fibers of GR. By contrast, staining for the beta1 and beta2 isoforms in the mostly oxidative fibers and the mostly glycolytic fibers, respectively, was almost mutually exclusive. With age, there was a fiber-type selective qualitative decrease of alpha2 and beta2 in Type IIB fibers, and increase of beta1 in Type IIB fibers and beta2 in Type IID fibers of white gastrocnemius. These results provide, at the individual fiber level, a cellular basis for the differential expression of the Na(+),K(+)-ATPase subunit isoforms in the muscle groups. The data further indicate that the aged-associated changes in expression of the subunit isoforms occur in both a fiber-type specific as well as an across fiber-type manner. Because of the differing biochemical properties of the subunit isoforms, these changes add another layer of complexity in our understanding of the adaptation of the Na-pump in skeletal muscle with advancing age.  相似文献   

7.
8.
G Blanco  R J Melton  G Sánchez  R W Mercer 《Biochemistry》1999,38(41):13661-13669
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.  相似文献   

9.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

10.
Functionally active preparations of Na+,K(+)-ATPase isozymes from calf brain that contain catalytic subunits of three types (alpha 1, alpha 2, and alpha 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of the membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K(+)-ATPase of the alpha 1 beta 1 type and minor amounts of isozymes of the alpha 2 beta 2 (beta 1) and the alpha 3 beta 1 (beta 2) type. The axolemma contains alpha 2 beta 1- and alpha 3 beta 1 isozymes. A carbohydrate analysis indicated that alpha 1 beta 1 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the beta 1 isoform. An enhanced sensitivity of the alpha 3 catalytic subunit of Na+,K(+)-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 decreases Y493 was localized (residue numbering is that of the human alpha 3 subunit). This sequence corresponds to one of the regions of the greatest variability in alpha 1, alpha 2, alpha 3, and alpha 4-subunits, but at the same time, it is characteristic of the alpha 3 isoforms of various species. The presence of the beta 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K(+)-ATPase alpha 3 beta 1 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the alpha 3 catalytic subunit was shown.  相似文献   

11.
Photoaffinity labeling of (Na+K+)-ATPase with [125I]iodoazidocymarin   总被引:3,自引:0,他引:3  
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources.  相似文献   

12.
The effects of dietary (n-6)/(n-3) polyunsaturated fatty acid balance on fatty acid composition, ouabain inhibition, and Na(+) dependence of Na(+), K(+)-ATPase isoenzymes of whole brain membranes were studied in 60-day-old rats fed over two generations a diet either devoid of alpha-linolenic acid [18:3(n-3)] (sunflower oil diet) or rich in 18:3(n-3) (soybean oil diet). In the brain membranes, the sunflower oil diet led to a dramatic decrease in docosahexaenoic acid [22:6(n-3)] membrane content. The activities of Na(+), K(+)-ATPase isoenzymes were discriminated on the basis of their differential affinities for ouabain and their sensitivity to sodium concentration. The ouabain titration curve of Na(+), K(+)-ATPase activity displayed three inhibitory processes with markedly different affinity [i.e., low (alpha1), high (alpha2), and very high (alpha3)] for brain membranes of rats fed the sunflower oil diet, whereas the brain membranes of rats fed the soybean oil diet exhibited only two inhibitory processes, low (alpha1) and high (alpha2' = alpha2 + alpha3). Regardless of the diet, on the basis of the Na(+) dependence of Na(+), K(+)-ATPase activity, three isoenzymes were found: alpha1 form displaying an affinity 1.5- to 2-fold higher that of than alpha2 and 3-fold higher that of alpha3. In rats fed the sunflower oil diet, alpha2 isoenzyme exhibited higher affinity for sodium (Ka = 8.8 mmol/L) than that of rats fed the soybean oil diet (Ka = 11.7 mmol/L). These results suggest that the membrane lipid environment modulates the functional properties of Na(+), K(+)-ATPase isoenzymes of high ouabain affinity (alpha2).  相似文献   

13.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

14.
Messenger RNA for the alpha subunit of Torpedo californica Na+/K(+)-ATPase was injected into Xenopus oocytes together with that of the beta subunit of rabbit H+/K(+)-ATPase. The Na+/K(+)-ATPase alpha subunit was assembled in the microsomal membranes with the H+/K(+)-ATPase beta subunit, and became resistant to trypsin. These results suggest that the H+/K(+)-ATPase beta subunit facilitates the stable assembly of the Na+/K(+)-ATPase alpha subunit in microsomes.  相似文献   

15.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

16.
Increases in Na/K-ATPase activity occur concurrently with the onset of cavitation and are associated with increases in Na(+)-pump subunit mRNA and protein expression. We have hypothesized that the alpha1-isozyme of the Na/K-ATPase is required to mediate blastocyst formation. We have tested this hypothesis by characterizing preimplantation development in mice with a targeted disruption of the Na/K-ATPase alpha1-subunit (Atp1a1) using embryos acquired from matings between Atp1a1 heterozygous mice. Mouse embryos homozygous for a null mutation in the Na/K-ATPase alpha1-subunit gene are able to undergo compaction and cavitation. These findings demonstrate that trophectoderm transport mechanisms are maintained in the absence of the predominant isozyme of the Na(+)-pump that has previously been localized to the basolateral membranes of mammalian trophectoderm cells. The presence of multiple isoforms of Na/K-ATPase alpha- and beta-subunits at the time of cavitation suggests that there may be a degree of genetic redundancy amongst isoforms of the catalytic alpha-subunit that allows blastocyst formation to progress in the absence of the alpha1-subunit.  相似文献   

17.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

18.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

19.
20.
The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,K(+)-ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an alpha and a beta subunit, so far, 4 alpha and 3 beta isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three alpha (alpha 1, alpha 2 and the neural form of alpha 3) and the three beta isoforms (beta 1, beta 2 and beta 3) of the Na+,K(+)-ATPase. The presence of multiple Na+,K(+)-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号