首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyphae of the fungus Pythium ultimum extend by tip growth. The use of surface markers demonstrates that cell expansion is limited to the curved portion of the hyphal apex. Growing and non-growing regions are reflected in internal organization as detected by light and electron microscopy. The young hypha consists of three regions: an apical zone, a subapical zone and a zone of vacuolation. The apical zone is characterized by an accumulation of cytoplasmic vesicles, often to the exclusion of other organelles and ribosomes. Vesicle membranes are occasionally continuous with plasma membrane. The subapical zone is non-vacuolate and rich in a variety of protoplasmic components. Dictyosomes are positioned adjacent to endoplasmic reticulum or nuclear envelope, and vesicles occur at the peripheries of dictyosomes. A pattern of secretory vesicle formation by dictyosomes is described which accounts for the formation of hyphal tip vesicles. Farther from the hyphal apex the subapical zone merges into the zone of vacuolation. As hyphae age vacuolation increases, lipid accumulations appear, and the proportional volume of cytoplasm is reduced accordingly. The findings are integrated into a general hypothesis to explain the genesis and participation of cell components involved directly in hyphal tip growth: Membrane material from the endoplasmic reticulum is transferred to dictyosome cisternae by blebbing; cisternal membranes are transformed from ER-like to plasma membrane-like during cisternal maturation; secretory vesicles released from dictyosomes migrate to the hyphal apex, fuse with the plasma membrane, and liberate their contents into the wall region. This allows a plasma membrane increase at the hyphal apex equal to the membrane surface of the incorporated vesicles as well as a contribution of the vesicle contents to surface expansion.  相似文献   

2.
In tip-growing plant cells such as pollen tubes and root hairs, surface expansion is confined to the cell apex. Vesicles containing pectic cell wall material are delivered to this apical region to provide the material necessarily to build the expanding cell wall. Quantification of wall expansion reveals that the surface expansion rates are not highest at the pole but instead in an annular region around the pole. These findings raise the question of the precise localization of exocytosis events in these cells. Recently, we used spatio-temporal image correlation spectroscopy (STICS) in combination with high temporal resolution confocal imaging to characterize the intracellular movement of vesicles in growing pollen tubes. These observations, together with the analysis of FRAP (fluorescence recovery after photobleaching) experiments, indicate that exocytosis is likely to occur predominantly in the same annular region where wall expansion rates are greatest. Therefore, tip growth in plant cells does not seem to happen exactly at the tip.Key words: tip growth, pollen tube, exocytosis, cell wall, expansion, root hair, plant cell growth, allometric growth, cytomechanics, cell mechanics, vesicle transport  相似文献   

3.
Summary Two different types of Golgi vesicles involved in wall formation can be visualized during lobe growth inMicrasterias when using high-pressure freeze fixation followed by freeze substitution. One type that corresponds to the dark vesicles (DV) described in literature seems to arise by a developmental process occurring at the Golgi bodies with the single vesicles being forwarded from one cisterna to the next. The other vesicle type appears to be produced at thetrans Golgi network without any visible precursors at the Golgi cisternae. A third type of vesicle, produced by median andtrans cisternae, contains slime; these are considerably larger than those previously mentioned and they do not participate in wall formation. The distribution of the two types of cell wall vesicles at the cell periphery and their fusion with the plasma membrane are shown for the first time, since chemical fixation is too slow to preserve a sufficient number of vesicles in the cortical cytoplasm. The results indicate that fusions of both types of vesicles with the plasma membrane are possible all over the entire surface of the growing half cell. However, the DVs are much more concentrated at the growing lobes, where they form queues several vesicles deep behind zones on the plasma membrane thought to be specific fusion sites. The structural observations reveal that the regions of enhanced vesicle fusion correspond in general to the sites of calcium accumulation determined in earlier studies. By virtue of the absence of the DVs in the region of cell wall indentations the second type of wall forming vesicle appears prominent; they too fuse with the plasma membrane and discharge their contents to the wall.  相似文献   

4.
Tethers play ubiquitous roles in membrane trafficking and influence the specificity of vesicle attachment. Unlike soluble N-ethyl-maleimide–sensitive fusion attachment protein receptors (SNAREs), the spatiotemporal dynamics of tethers relative to vesicle fusion are poorly characterized. The most extensively studied tethering complex is the exocyst, which spatially targets vesicles to sites on the plasma membrane. By using a mammalian genetic replacement strategy, we were able to assemble fluorescently tagged Sec8 into the exocyst complex, which was shown to be functional by biochemical, trafficking, and morphological criteria. Ultrasensitive live-cell imaging revealed that Sec8-TagRFP moved to the cell cortex on vesicles, which preferentially originated from the endocytic recycling compartment. Surprisingly, Sec8 remained with vesicles until full dilation of the fusion pore, supporting potential coupling with SNARE fusion machinery. Fluorescence recovery after photobleaching analysis of Sec8 at cell protrusions revealed that a significant fraction was immobile. Additionally, Sec8 dynamically repositioned to the site of membrane expansion, suggesting that it may respond to local cues during early cell polarization.  相似文献   

5.
Pollen tubes are one of the fastest growing eukaryotic cells.Rapid anisotropic growth is supported by highly active exocytosisand endocytosis at the plasma membrane, but the subcellularlocalization of these sites is unknown. To understand molecularprocesses involved in pollen tube growth, it is crucial to identifythe sites of vesicle localization and trafficking. This reportpresents novel strategies to identify exocytic and endocyticvesicles and to visualize vesicle trafficking dynamics, usingpulse-chase labelling with styryl FM dyes and refraction-freehigh-resolution time-lapse differential interference contrastmicroscopy. These experiments reveal that the apex is the siteof endocytosis and membrane retrieval, while exocytosis occursin the zone adjacent to the apical dome. Larger vesicles areinternalized along the distal pollen tube. Discretely sizedvesicles that differentially incorporate FM dyes accumulatein the apical, subapical, and distal regions. Previous workestablished that pollen tube growth is strongly correlated withhydrodynamic flux and cell volume status. In this report, itis shown that hydrodynamic flux can selectively increase exocytosisor endocytosis. Hypotonic treatment and cell swelling stimulatedexocytosis and attenuated endocytosis, while hypertonic treatmentand cell shrinking stimulated endocytosis and inhibited exocytosis.Manipulation of pollen tube apical volume and membrane remodellingenabled fine-mapping of plasma membrane dynamics and definedthe boundary of the growth zone, which results from the orchestratedaction of endocytosis at the apex and along the distal tubeand exocytosis in the subapical region. This report providescrucial spatial and temporal details of vesicle traffickingand anisotropic growth. Key words: Endocytosis; exocytosis, hydrodynamics, lipophilic FM dyes, pollen tube growth, vesicle trafficking Received 14 September 2007; Revised 23 November 2007 Accepted 7 January 2008  相似文献   

6.
Secretion occurs in all living cells and involves the delivery of intracellular products to the cell exterior. Secretory products are packaged and stored in membranous sacs or vesicles within the cell. When the cell needs to secrete these products, the secretory vesicles containing them dock and fuse at plasma membrane-associated supramolecular structures, called porosomes, to release their contents. Specialized cells for neurotransmission, enzyme secretion, or hormone release use a highly regulated secretory process. Similar to other fundamental cellular processes, cell secretion is precisely regulated. During secretion, swelling of secretory vesicles results in a build-up of intravesicular pressure, allowing expulsion of vesicular contents. The extent of vesicle swelling dictates the amount of vesicular contents expelled. The discovery of the porosome as the universal secretory machinery, its isolation, its structure and dynamics at nanometer resolution and in real time, and its biochemical composition and functional reconstitution into artificial lipid membrane have been determined. The molecular mechanism of secretory vesicle swelling and the fusion of opposing bilayers, that is, the fusion of secretory vesicle membrane at the base of the porosome membrane, have also been resolved. These findings reveal, for the first time, the universal molecular machinery and mechanism of secretion in cells.  相似文献   

7.
The cell wall, a crucial cell compartment, is composed of a network of polysaccharides and proteins, providing structural support and protection from external stimuli. While the cell wall structure and biosynthesis have been extensively studied, very little is known about the transport of polysaccharides and other components into the developing cell wall. This review focuses on endomembrane trafficking pathways involved in cell wall deposition. Cellulose synthase complexes are assembled in the Golgi, and are transported in vesicles to the plasma membrane. Non-cellulosic polysaccharides are synthesized in the Golgi apparatus, whereas cellulose is produced by enzyme complexes at the plasma membrane. Polysaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however, the precise mechanisms involved in selection, sorting and delivery remain to be identified. The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate. However, the nature of these vesicles, their membrane compositions, and the timing of their delivery are largely unknown. Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.  相似文献   

8.
Nerve growth depends on the delivery of cell body–synthesized material to the growing neuronal processes. The cellular mechanisms that determine the topology of new membrane addition to the axon are not known. Here we describe a technique to visualize the transport and sites of exocytosis of cell body– derived vesicles in growing axons. We found that in Xenopus embryo neurons in culture, cell body–derived vesicles were rapidly transported all the way down to the growth cone region, where they fused with the plasma membrane. Suppression of microtubule (MT) dynamic instability did not interfere with the delivery of new membrane material to the growth cone region; however, the insertion of vesicles into the plasma membrane was dramatically inhibited. Local disassembly of MTs by focal application of nocodazole to the middle axonal segment resulted in the addition of new membrane at the site of drug application. Our results suggest that the local destabilization of axonal MTs is necessary and sufficient for the delivery of membrane material to specific neuronal sites.  相似文献   

9.
F. M. Harold 《Protoplasma》1997,197(3-4):137-147
Summary Apical growth of fungal hyphae represents a relatively simple instance of cellular morphogenesis. Thanks to the polarized transport and exocytosis of precursor vesicles, new cell wall and plasma membrane are continuously deposited at the hyphal apex; the question is how the characteristic shape of tube and tapered tip comes about. Recent experiments lend support to a model whose central feature is a mobile vesicle supply center corresponding to the Spitzenkörper (apical body) visible in growing hyphae. Shapes predicted by the model agree remarkably well with those of actual hyphae. Nevertheless, critical examination of the model's premises suggests that it requires extension so as to incorporate both a driving force for expansion and a gradient of cell wall plasticity. I propose that a mobile vesicle supply center may be one, but only one, of a range of physiological devices employed by tip-growing organisms to localize the exocytosis of precursor vesicles. Apical growth should ensue whenever the loci of exocytosis advance vectorially, and nascent cell wall expands in a graded manner.Abbrevations VSC vesicle supply center - SPK Spitzenkörper  相似文献   

10.
Src-family kinases that localize to the cytoplasmic side of cellular membranes through lipid modification play a role in signaling events including membrane trafficking. Macropinocytosis is an endocytic process for solute uptake by large vesicles called macropinosomes. Although macropinosomes can be visualized following uptake of fluorescent macromolecules, little is known about the dynamics of macropinosomes in living cells. Here, we show that constitutive c-Src expression generates macropinosomes in a kinase-dependent manner. Live-cell imaging of GFP-tagged c-Src (Src-GFP) reveals that c-Src associates with macropinosomes via its N-terminus continuously from their generation at membrane ruffles, through their centripetal trafficking, to fusion with late endosomes and lysosomes. Fluorescence recovery after photobleaching (FRAP) of Src-GFP shows that Src-GFP is rapidly recruited to macropinosomal membranes from the plasma membrane and intracellular organelles through vesicle transport even in the presence of a protein synthesis inhibitor. Furthermore, using a HeLa cell line overexpressing inducible c-Src, we show that following stimulation with epidermal growth factor (EGF), high levels of c-Src kinase activity promote formation of macropinosomes associated with the lysosomal compartment. Unlike c-Src, Lyn and Fyn, which are palmitoylated Src kinases, only minimally induce macropinosomes, although a Lyn mutant in which the palmitoylation site is mutated efficiently induces macropinocytosis. We conclude that kinase activity of nonpalmitoylated Src kinases including c-Src may play an important role in the biogenesis and trafficking of macropinosomes.  相似文献   

11.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

12.
U. Ryser 《Protoplasma》1979,98(3):223-239
Summary Coated vesicles occur in differentiating cotton fibres during primary and secondary wall formation. The coated vesicles are often associated with the plasmalemma, or with membranes at the secreting face of dictyosomes, corresponding positionally to GERL. During secondary wall formation the number of dictyosome-associated coated vesicles seems to be smaller than during primary wall formation. When sections are stained for periodateoxidizable polysaccharides (Thiéry reaction) the membrane of plasmalemma-associated coated vesicles is intensely stained. The membrane of dictyosome-associated coated vesicles is only weakly stained. On the basis of the present evidence it is not possible to clearly decide, whether the staining in plasmalemma-associated coated vesicles is due to obliquely cut membrane or to vesicle contents. The vesicle coat material is not stained. Possible functions of coated vesicles in differentiating cotton fibres are discussed.Vesicles with contents positively stained with the Thiéry reaction are observed only during primary wall formation. The membrane of these vesicles is smooth and seems to bud from the same cisternae, probably GERL, as do the coated vesicles. During secondary wall formation no vesicles containing periodate-oxidizable polysaccharides could be detected, even under conditions that result in a strong, specific reaction in the cellulosic secondary wall. In some instances polysaccharidic material, resembling secondary wall material, has been seen to adhere to the outside of the plasmalemma. These results are consistent with the hypothesis that, in higher plants, at least part of primary wall material may already be synthesized in dictyosome vesicles, whereas cellulose biosynthesis occurs at the cell surface.  相似文献   

13.
DC-SIGN, a Ca2+-dependent transmembrane lectin, is found assembled in microdomains on the plasma membranes of dendritic cells. These microdomains bind a large variety of pathogens and facilitate their uptake for subsequent antigen presentation. In this study, DC-SIGN dynamics in microdomains were explored with several fluorescence microscopy methods and compared with dynamics for influenza hemagglutinin (HA), which is also found in plasma membrane microdomains. Fluorescence imaging indicated that DC-SIGN microdomains may contain other C-type lectins and that the DC-SIGN cytoplasmic region is not required for microdomain formation. Fluorescence recovery after photobleaching measurements showed that neither full-length nor cytoplasmically truncated DC-SIGN in microdomains appreciably exchanged with like molecules in other microdomains and the membrane surround, whereas HA in microdomains exchanged almost completely. Line-scan fluorescence correlation spectroscopy indicated an essentially undetectable lateral mobility for DC-SIGN but an appreciable mobility for HA within their respective domains. Single-particle tracking with defined-valency quantum dots confirmed that HA has significant mobility within microdomains, whereas DC-SIGN does not. By contrast, fluorescence recovery after photobleaching indicated that inner leaflet lipids are able to move through DC-SIGN microdomains. The surprising stability of DC-SIGN microdomains may reflect structural features that enhance pathogen uptake either by providing high-avidity platforms and/or by protecting against rapid microdomain endocytosis.  相似文献   

14.
Tip growth in pollen tubes occurs by continuous vesicle secretion and delivery of new wall material, but the exact sub-cellular location of endocytic and exocytic domains remains unclear. Here we studied the localization of the Arabidopsis thaliana pollen specific syntaxin SYP125 using GFP-fusion constructs expressed in Nicotiana tobaccum pollen tubes. In agreement with the predicted role for syntaxins, SYP125 was found to be associated with the plasma membrane and apical vesicles in growing cells. At the plasma membrane, SYP125 was asymmetrically localized with a higher labeling 20–35 µm behind the apex, a distribution which is distinct from SYP124, another pollen-specific syntaxin. Competition with a related dominant negative mutant affected the specific distribution of SYP125 but not tip growth. Co-expression of the phosphatidylinositol-4-monophosphate-5-kinase 4 (PIP5K4) or of the small GTPase Rab11 perturbed polarity and the normal distribution of GFP-SYP but did not inhibit the accumulation in vesicles or at the plasma membrane.Taken together, our results corroborates previous observations that in normal growing pollen tubes, the asymmetric distribution of syntaxins helps to define exocytic sub-domains but requires the involvement of additional signaling and functional mechanisms, namely phosphoinositides and small GTPases. The localization of syntaxins at different membrane domains likely depends on the interaction with specific partners not yet identified.Key words: [Ca2+]c, endocytosis, exocytosis, secretion, syntaxins, tip growth  相似文献   

15.
The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the "front" of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-actin (and hence directed vesicle traffic) speeds fluorescence recovery of Cdc42p after photobleaching, suggesting that vesicle traffic of Cdc42p contributes to polarization. We present a mathematical modeling framework that combines previously developed mechanistic reaction-diffusion and vesicle-trafficking models. Surprisingly, the combined model recapitulated the observed effect of vesicle traffic on Cdc42p dynamics even when the vesicles did not carry significant amounts of Cdc42p. Vesicle traffic reduced the concentration of Cdc42p at the front, so that fluorescence recovery mediated by Cdc42p flux from the cytoplasm took less time to replenish the bleached pool. Simulations in which Cdc42p was concentrated into vesicles or depleted from vesicles yielded almost identical predictions, because Cdc42p flux from the cytoplasm was dominant. These findings indicate that vesicle-mediated delivery of Cdc42p is not required to explain the observed Cdc42p dynamics, and raise the question of whether such Cdc42p traffic actually contributes to polarity establishment.  相似文献   

16.
The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments.  相似文献   

17.
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo .  相似文献   

18.
We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse the synapse. Applying the phosphatase inhibitor okadaic acid causes vesicles to diffuse freely, moving 30 times faster than vesicles in control synapses. These results suggest that vesicles move sluggishly due to binding to elements of the synaptic cytomatrix and that this binding is altered by phosphorylation. Motivated by these results, a model is constructed consisting of diffusing vesicles that bind reversibly to the cytomatrix. This stick-and-diffuse model accounts for the fluorescence correlation spectroscopy and fluorescence recovery after photobleaching data, and also predicts the well-known exponential refilling of the readily releasable pool. Our measurements suggest that the movement of vesicles to the active zone is the rate-limiting step in this process.  相似文献   

19.
Neurons are polarized cells of extreme scale and compartmentalization. To fulfill their role in electrochemical signaling, axons must maintain a specific complement of membrane proteins. Despite being the subject of considerable attention, the trafficking pathway of axonal membrane proteins is not well understood. Two pathways, direct delivery and transcytosis, have been proposed. Previous studies reached contradictory conclusions about which of these mediates delivery of axonal membrane proteins to their destination, in part because they evaluated long-term distribution changes and not vesicle transport. We developed a novel strategy to selectively label vesicles in different trafficking pathways and determined the trafficking of two canonical axonal membrane proteins, neuron–glia cell adhesion molecule and vesicle-associated membrane protein-2. Results from detailed quantitative analyses of transporting vesicles differed substantially from previous studies and found that axonal membrane proteins overwhelmingly undergo direct delivery. Transcytosis plays only a minor role in axonal delivery of these proteins. In addition, we identified a novel pathway by which wayward axonal proteins that reach the dendritic plasma membrane are targeted to lysosomes. These results redefine how axonal proteins achieve their polarized distribution, a crucial requirement for elucidating the underlying molecular mechanisms.  相似文献   

20.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号