首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

2.
beta-arrestins (betaarrs) are two highly homologous proteins that uncouple G protein-coupled receptors from their cognate G proteins, serve as adaptor molecules linking G protein-coupled receptors to clathrin-coat components (AP-2 complex and clathrin), and act as scaffolding proteins for ERK1/2 and JNK3 cascades. A striking difference between the two betaarrs (betaarr1 and betaarr2) is that betaarr1 is evenly distributed throughout the cell, whereas betaarr2 shows an apparent cytoplasmic localization at steady state. Here, we investigate the molecular determinants underlying this differential distribution. betaarr2 is constitutively excluded from the nucleus by a leptomycin B-sensitive pathway because of the presence of a classical leucine-rich nuclear export signal in its C terminus (L395/L397) that is absent in betaarr1. In addition, using a nuclear import assay in yeast we showed that betaarr2 is actively imported into the nucleus, suggesting that betaarr2 undergoes constitutive nucleocytoplasmic shuttling. In cells expressing betaarr2, JNK3 is mostly cytosolic. A point mutation of the nuclear export signal (L395A) in betaarr2, which was sufficient to redistribute betaarr2 from the cytosol to the nucleus, also caused the nuclear relocalization of JNK3. These data indicate that the nucleocytoplasmic shuttling of betaarr2 controls the subcellular distribution of JNK3.  相似文献   

3.
A key function of the Nef protein of immunodeficiency viruses is the downregulation of the T-cell and macrophage coreceptor, CD4, from the surfaces of infected cells. CD4 downregulation depends on a conserved (D/E)XXXL(L/I)-type dileucine motif in the C-terminal, flexible loop of Nef, which mediates binding to the clathrin adaptor complexes AP-1, AP-2, and AP-3. We now report the identification of a consensus (D/E)D motif within this loop as a second, conserved determinant of interaction of Nef with AP-2, though not with AP-1 and AP-3. Mutations in this diacidic motif abrogate both AP-2 binding and CD4 downregulation. We also show that a dileucine motif from tyrosinase, both in its native context and in the context of Nef, can bind to AP-2 independently of a diacidic motif. These results thus identify a novel type of AP-2 interaction determinant, support the notion that AP-2 is the key clathrin adaptor for the downregulation of CD4 by Nef, and reveal a previously unrecognized diversity among dileucine sorting signals.  相似文献   

4.
Many plasma membrane proteins destined for endocytosis are concentrated into clathrin-coated pits through the recognition of a tyrosine-based motif in their cytosolic domains by an adaptor (AP-2) complex. The mu2 subunit of isolated AP-2 complexes binds specifically, but rather weakly, to proteins bearing the tyrosine-based signal. We now demonstrate, using peptides with a photoreactive probe, that this binding is strengthened significantly when the AP-2 complex is present in clathrin coats, indicating that there is cooperativity between receptor-AP-2 interactions and coat formation. Phosphoinositides with a phosphate at the D-3 position of the inositol ring, but not other isomers, also increase the affinity of the AP-2 complex for the tyrosine-based motif. AP-2 is the first protein known (in any context) to interact with phosphatidylinositol 3-phosphate. Our findings indicate that receptor recruitment can be coupled to clathrin coat assembly and suggest a mechanism for regulation of membrane traffic by lipid products of phosphoinositide 3-kinases.  相似文献   

5.
Clathrin-associated sorting proteins (CLASPs) expand the repertoire of endocytic cargo sorted into clathrin-coated vesicles beyond the transmembrane proteins that bind physically to the AP-2 adaptor. LDL and GPCRs are internalized by ARH and beta-arrestin, respectively. We show that these two CLASPs bind selectively to the AP-2 beta2 appendage platform via an alpha-helical [DE](n)X(1-2)FXX[FL]XXXR motif, and that this motif also occurs and is functional in the epsins. In beta-arrestin, this motif maintains the endocytosis-incompetent state by binding back on the folded core of the protein in a beta strand conformation. Triggered via a beta-arrestin/GPCR interaction, the motif must be displaced and must undergo a strand to helix transition to enable the beta2 appendage binding that drives GPCR-beta-arrestin complexes into clathrin coats. Another interaction surface on the beta2 appendage sandwich is identified for proteins such as eps15 and clathrin, suggesting a mechanism by which clathrin displaces eps15 to lattice edges during assembly.  相似文献   

6.
To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXX phi motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail ((320)YSQA) and a methionine in Nef (Met(20)) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala(324) and Asp(327) in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the mu subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1.  相似文献   

7.
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.  相似文献   

8.
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.  相似文献   

9.
The clathrin adaptor complex AP-2 functions in the assembly of clathrin-coated vesicles at the plasma membrane where it serves to couple endocytic vesicle formation to the selection of membrane cargo proteins. Recent evidence suggests that binding of tyrosine-based endocytic sorting motifs may induce a conformational change within the AP-2 adaptor complex that could enhance its interaction with other cargo molecules and with the membrane. We report here that soluble tyrosine-based endocytic sorting motif peptides facilitate clathrin/AP-2 recruitment to liposomal membranes and induce adaptor oligomerization even in the absence of a lipid bilayer. These effects are specific for endocytic motifs of the type Yxxphi whereas peptides corresponding to NPxY- or di-leucine-containing sorting signals are ineffective. Our data may help to explain how the highly cooperative assembly of clathrin and adaptors could be linked to the selection of membrane cargo proteins.  相似文献   

10.
Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh(-/-) mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.  相似文献   

11.
Accessory protein recruitment motifs in clathrin-mediated endocytosis   总被引:11,自引:0,他引:11  
Clathrin-mediated endocytosis depends upon the interaction of accessory proteins with the alpha-ear of the AP-2 adaptor. We present structural characterization of these regulatory interactions. DPF and DPW motif peptides derived from eps15 and epsin bind in type I beta turn conformations to a conserved pocket on the alpha-ear platform. We show evidence for a second binding site that is DPW motif specific. The structure of a complex with an AP-2 binding segment from amphiphysin reveals a novel binding motif that we term FxDxF, which is engaged in an extended conformation by a unique surface of the platform domain. The FxDxF motif is also used by AP180 and the 170 kDa isoform of synaptojanin and can be found in several potential endocytic proteins, including HIP1, CD2AP, and PLAP. A mechanism of clathrin assembly regulation is suggested by three different AP-2 engagement modes.  相似文献   

12.
beta-Arrestins (betaarr) are multifunctional adaptor proteins that can act as scaffolds for G protein-coupled receptor activation of mitogen-activated protein kinases (MAPK). Here, we identify the actin-binding and scaffolding protein filamin A (FLNA) as a betaarr-binding partner using Son of sevenless recruitment system screening, a classical yeast two-hybrid system, coimmunoprecipitation analyses, and direct binding in vitro. In FLNA, the betaarr-binding site involves tandem repeat 22 in the carboxyl terminus. betaarr binds FLNA through both its N- and C-terminal domains, indicating the presence of multiple binding sites. We demonstrate that betaarr and FLNA act cooperatively to activate the MAPK extracellular signal-regulated kinase (ERK) downstream of activated muscarinic M1 (M1MR) and angiotensin II type 1a (AT1AR) receptors and provide experimental evidence indicating that this phenomenon is due to the facilitation of betaarr-ERK2 complex formation by FLNA. In Hep2 cells, stimulation of M1MR or AT1AR results in the colocalization of receptor, betaarr, FLNA, and active ERK in membrane ruffles. Reduction of endogenous levels of betaarr or FLNA and a catalytically inactive dominant negative MEK1, which prevents ERK activation, inhibit membrane ruffle formation, indicating the functional requirement for betaarr, FLNA, and active ERK in this process. Our results indicate that betaarr and FLNA cooperate to regulate ERK activation and actin cytoskeleton reorganization.  相似文献   

13.
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.  相似文献   

14.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

15.
Clathrin-coated pit (CCP) formation occurs as a result of the targeting and assembly of cytosolic coat proteins, mainly the plasma membrane clathrin-associated protein complex (AP-2) and clathrin, to the intracellular face of the plasma membrane. In the present study, the mechanisms by which Eps15, an AP-2-binding protein, is targeted to CCPs was analyzed by following the intracellular localization of Eps15 mutants fused to the green fluorescent protein. Our previous results indicated that the N-terminal Eps15 homology (EH) domains are required for CCP targeting. We now show that EH domains are, however, not sufficient for targeting to CCPs. Similarly, neither the central coiled-coil nor the C-terminal AP-2 binding domains were able to address green fluorescent protein to CCPs. Thus, targeting of Eps15 to CCPs likely results from the collaboration between EH domains and another domain of the protein. An Eps15 mutant lacking the coiled-coil domain localized to CCPs showing that Eps15 dimerization is not strictly required. In contrast, Eps15 mutants lacking all AP-2 binding sites showed a dramatic decrease in plasma membrane staining, showing that AP-2 binding sites, together with EH domains, play an important role in targeting Eps15 into CCPs. Finally, the effect of the Eps15 mutants on clathrin-dependent endocytosis was tested by both immunofluorescence and flow cytometry. The results obtained showed that inhibition of transferrin uptake was observed only with mutants able to interfere with CCP assembly.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) contains a conserved tyrosine-based internalization motif, (1424)YDSI, which interacts with the endocytic clathrin adaptor complex, AP-2, and is required for its efficient endocytosis. Although direct interactions between several endocytic sequences and the medium chain and endocytic clathrin adaptor complexes have been shown by protein-protein interaction assays, whether all these interactions occur in vivo or are physiologically important has not always been addressed. Here we show, using both in vitro and in vivo assays, a physiologically relevant interaction between CFTR and the mu subunit of AP-2. Cross-linking experiments were performed using photoreactive peptides containing the YDSI motif and purified adaptor complexes. CFTR peptides cross-linked a 50-kDa subunit of purified AP-2 complexes, the apparent molecular mass of mu 2. Furthermore, isolated mu 2 bound to the sorting motif, YDSI, both in cross-linking experiments and glutathione S-transferase pull-down experiments, confirming that mu 2 mediates the interaction between CFTR and AP-2 complexes. Inducible overexpression of dominant-negative mu 2 in HeLa cells results in AP-2 complexes that fail to interact with CFTR. Moreover, internalization of CFTR in mutant cells is greatly reduced compared with wild type HeLa cells. These results indicate that the AP-2 endocytic complex selectively interacts with the conserved tyrosine-based internalization signal in the carboxyl terminus of CFTR, YDSI. Furthermore, this interaction is mediated by the mu 2 subunit of AP-2 and mutations in mu 2 that block its interaction with YDSI inhibit the incorporation of CFTR into the clathrin-mediated endocytic pathway.  相似文献   

17.
In previous work, we showed that peptides from endocytosed proteins containing the tyrosine YXXphi sorting motif are recognized by the mu 2 subunit of AP-2, the plasma membrane clathrin adaptor protein complex. This interaction is activated by phosphoinositide lipids that are phosphorylated at the D-3 position of the inositol ring, and is also enhanced by the formation of clathrin-AP-2 coats. Here, we describe the detection of a specific interaction between peptides containing a second sorting motif, the dileucine motif, and AP-1, the clathrin adaptor complex responsible for sorting proteins at the trans-Golgi network (TGN). Surprisingly, the site of dileucine binding is the beta1 subunit, not mu 1. A YXXphi-containing peptide from a protein trafficked within the TGN does bind to mu 1, however. Phosphatidylinositol 3,4-diphosphate and 3,4, 5-triphosphate did not activate the interaction between dileucine-containing peptides and AP-1 but instead inhibited it, and clathrin-AP-1 coat formation did not alter the interaction. Thus, there are at least two physically separate binding sites for sorting signals on APs, which are also regulated independently.  相似文献   

18.
The non-visual arrestins, arrestin-2 and arrestin-3, play a critical role in regulating the signaling and trafficking of many G protein-coupled receptors (GPCRs). Molecular insight into the role of arrestins in GPCR trafficking has suggested that arrestin interaction with clathrin, beta(2)-adaptin (the beta-subunit of the adaptor protein AP2), and phosphoinositides contributes to this process. In the present study, we have attempted to better define the molecular basis and functional role of arrestin-2 interaction with clathrin and beta(2)-adaptin. Site-directed mutagenesis revealed that the C-terminal region of arrestin-2 mediated beta(2)-adaptin and clathrin interaction with Phe-391 and Arg-395 having an essential role in beta(2)-adaptin binding and LIELD (residues 376-380) having an essential role in clathrin binding. Interestingly, arrestin-2-R169E, an activated form of arrestin that binds to GPCRs in a phosphorylation-independent manner, has significantly enhanced binding to beta(2)-adaptin and clathrin. This suggests that receptor-induced conformational changes in the C-terminal tail of arrestin-2 will likely play a major role in mediating arrestin interaction with clathrin-coated pits. In an effort to clarify the role of these interactions in GPCR trafficking we generated arrestin mutants that were completely and selectively defective in either clathrin (arrestin-2-DeltaLIELD) or beta(2)-adaptin (arrestin-2-F391A) interaction. Analysis of these mutants in COS-1 cells revealed that arrestin/clathrin interaction was essential for agonist-promoted internalization of the beta(2)-adrenergic receptor, while arrestin/beta(2)-adaptin interaction appeared less critical. Arrestin-2 mutants defective in both clathrin and beta(2)-adaptin binding functioned as effective dominant negatives in HEK293 cells and significantly attenuated beta(2)-adrenergic receptor internalization. These mutants should prove useful in better defining the role of arrestins in mediating receptor trafficking.  相似文献   

19.
The heterotetrameric AP-1 adaptor complex is involved in the assembly of clathrin-coated vesicles originating from the trans-Golgi network (TGN). The beta 1 subunit of AP-1 is known to contain a consensus clathrin binding sequence, LLNLD (the so-called clathrin box motif), in its hinge segment through which the beta chain interacts with the N-terminal domains of clathrin trimers. Here, we report that the hinge region of the gamma subunit of human and mouse AP-1 contains two copies of a new variant, LLDLL, of the clathrin box motif that also bind to the terminal domain of the clathrin heavy chain. High-affinity binding of the gamma hinge to clathrin trimers requires both LLDLL sequences to be present and the spacing between them to be maintained. We also identify an independent clathrin-binding site within the appendage domain of the gamma subunit that interacts with a region of clathrin other than the N-terminal domain. Clathrin polymerization is promoted by glutathione S-transferase (GST)-gamma hinge, but not by GST-gamma appendage. However, the hinge and appendage domains of gamma function in a cooperative manner to recruit and polymerize clathrin, suggesting that clathrin lattice assembly at the TGN involves multivalent binding of clathrin by the gamma and beta1 subunits of AP-1.  相似文献   

20.
One target for the small GTPase Cdc42 is the nonreceptor tyrosine kinase activated Cdc42-associated kinase (ACK), which binds selectively to Cdc42.GTP. We report that ACK1 can associate directly with the heavy chain of clathrin. A central region in ACK1 containing a conserved motif behaves as a clathrin adaptor and competes with beta-arrestin for a common binding site on the clathrin N-terminal head domain. Overexpressed ACK1 perturbs clathrin distribution, an activity dependent on the presence of C-terminal "adaptor" sequences that are also present in the related nonkinase gene 33. ACK1 interacts with the adaptor Nck via SH3 interactions but does not form a trimeric complex with p21-activated serine/threonine kinase, which also binds Nck. Stable low level expression of green fluorescent protein-ACK1 in NIH 3T3 cells has been used to localize ACK1 to clathrin-containing vesicles. The co-localization of ACK1 in vivo with clathrin and AP-2 indicates that it participates in trafficking, underlying an ability to increase receptor-mediated transferrin uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号